【題目】某工廠生產(chǎn)的件新產(chǎn)品,需要精加工后才能投放市場.現(xiàn)把精加工新產(chǎn)品的任務(wù)分給甲、乙兩人,甲加工新產(chǎn)品的數(shù)量要比乙多.

(1)求甲、乙兩人各需加工多少件新產(chǎn)品;

(2)已知乙比甲平均每天少加工件新產(chǎn)品,用時(shí)比甲多用天時(shí)間.求甲平均每天加工多少件新產(chǎn)品.

【答案】1)甲、乙兩人分別需加工件、件產(chǎn)品;(2)甲平均每天加工件產(chǎn)品

【解析】

1)方法一:先求得乙的加工的產(chǎn)品件數(shù),即可求得甲需加工的產(chǎn)品件數(shù);方法二:設(shè)乙需加工件產(chǎn)品,結(jié)合題意列出甲、乙需加工的產(chǎn)品件數(shù)即可.

2)設(shè)甲平均每天加工件產(chǎn)品,則乙平均每天加工件產(chǎn)品,結(jié)合題意列出方程求解即可.

:(1)方法一:乙的加工的產(chǎn)品件數(shù)為:

則甲需加工的產(chǎn)品件數(shù)為:

方法二:設(shè)乙需加工件產(chǎn)品,則甲需加工件零件,

根據(jù)題意,得.

解得

所以,

甲、乙兩人分別需加工件、件產(chǎn)品.

(2)設(shè)甲平均每天加工件產(chǎn)品,則乙平均每天加工件產(chǎn)品,

由題意可得

解得

經(jīng)檢驗(yàn)它們都是原方程的根,但不符合題意.

:甲平均每天加工件產(chǎn)品

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的周長為19,點(diǎn)D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為N,ACB的平分線垂直于AD,垂足為M,若BC=7,則MN的長度為( 。

A. B. 2 C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,林老師在黑板上畫出如圖所示的圖形(其中點(diǎn)B、FC、E在同一直線上),并寫出四個(gè)條件:①AB=DE②BF=EC,③∠B=∠E④∠1=∠2.請你從這四個(gè)條件中選出三個(gè)作為題設(shè),另一個(gè)作為結(jié)論,組成一個(gè)真命題,并給予證明.題設(shè):______________;結(jié)論:________(均填寫序號)

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)的圖像經(jīng)過點(diǎn)A0,4 ,且與兩坐標(biāo)軸圍成的三角形面積是8,則這個(gè)函數(shù)的解析式是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=C,BC=8cmBD=6cm如果點(diǎn)P在線段BC上以1cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)Q的速度為xcm/s,則當(dāng)△BPD△CQP全等時(shí),x=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn),點(diǎn)在第一象限內(nèi),軸,且.

(1)求直線的表達(dá)式;

(2)如果四邊形是等腰梯形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的半徑為,的兩條弦,,,則弦之間的距離是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是直線AC外的一點(diǎn),點(diǎn)D,E分別是AC,CB兩邊上的點(diǎn),點(diǎn)P關(guān)于CA的對稱點(diǎn)P1恰好落在線段ED,P點(diǎn)關(guān)于CB的對稱點(diǎn)P2落在ED的延長線上,PE=2.5,PD=3,ED=4,則線段P1P2的長為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:

我們在分析解決某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一,所謂“作差法”:就是通過作差、變形,并利用差的符號來確定它們的大小,要比較代數(shù)式、的大小,只要作出它們的差,若,則.若,則.若,則

問題解決:

如圖,試比較圖①、圖②兩個(gè)矩形的周長、的大小;

主圖形得:;,

,∴,則;

類比應(yīng)用:

1)用材料介紹的“作差法”比較的大;

聯(lián)系拓展:

2)小剛在超市里買了一些物品,用一個(gè)長方體的箱子“打包”,這個(gè)箱子的尺寸如圖3所示(其中),售貨員分別可按圖4、圖5、圖6三種方法進(jìn)行捆綁,問哪種方法用繩最短?哪種方法用繩最長?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案