已知,且a+b=10,則4a-3b=________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀材料:已知p2-p-1=0 , 1-q-q2=0, 且pq≠1 ,求的值.

解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0,

又因為pq≠1 所以p≠,所以1-q-q2 =0可變形為:(2-()-1=0 ,

根據(jù)p2-p-1=0和(2-()-1=0的特征,

p與可以看作方程x2-x-1=0的兩個不相等的實數(shù)根,所以p+=1,  所以=1.

根據(jù)以上閱讀材料所提供的方法,完成下面的解答:

1.已知m2-5mn+6n2=0,m>n,求的值

2.已知2m2-5m-1=0,()2-2=0,且m≠n ,求的值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆四川樂山市中區(qū)中考模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

在課外小組活動時,小偉拿來一道題(原問題)和小熊、小強交流.
原問題:如圖1,已知△ABC, ∠ACB=90°, ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB,  EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點F. 探究線段DF與EF的數(shù)量關(guān)系.小偉同學(xué)的思路是:過點D作DG⊥AB于G,構(gòu)造全等三角形,通過推理使問題得解.小熊同學(xué)說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小強同學(xué)經(jīng)過合情推理,提出一個猜想,我們可以把問題推廣到一般情況.請你參考小慧同學(xué)的思路,探究并解決這三位同學(xué)提出的問題:
【小題1】寫出原問題中DF與EF的數(shù)量關(guān)系
【小題2】如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明;
【小題3】如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中

得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年四川樂山市區(qū)中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

在課外小組活動時,小偉拿來一道題(原問題)和小熊、小強交流.

原問題:如圖1,已知△ABC, ∠ACB=90° , ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB,  EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點F. 探究線段DF與EF的數(shù)量關(guān)系.小偉同學(xué)的思路是:過點D作DG⊥AB于G,構(gòu)造全等三角形,通過推理使問題得解.小熊同學(xué)說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小強同學(xué)經(jīng)過合情推理,提出一個猜想,我們可以把問題推廣到一般情況.請你參考小慧同學(xué)的思路,探究并解決這三位同學(xué)提出的問題:

1.寫出原問題中DF與EF的數(shù)量關(guān)系

2.如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明;

3.如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中

得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣東珠海紫荊中學(xué)一模數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀材料:已知p2-p-1=0 , 1-q-q2=0 , 且pq≠1 ,求的值.

解:由p2-p-1=0及1-q-q2=0,可知p≠0,q≠0,

又因為pq≠1 所以p≠,所以1-q-q2 =0可變形為:(2-()-1=0 ,

根據(jù)p2-p-1=0和(2-()-1=0的特征,

p與可以看作方程x2-x-1=0的兩個不相等的實數(shù)根,所以p+=1,  所以=1.

根據(jù)以上閱讀材料所提供的方法,完成下面的解答:

1.已知m2-5mn+6n2=0,m>n,求的值

2.已知2m2-5m-1=0,()2-2=0,且m≠n ,求的值.

 

查看答案和解析>>

同步練習(xí)冊答案