(2012•通州區(qū)一模)已知:如圖,二次函數(shù)y=a(x+1)2-4的圖象與x軸分別交于A、B兩點,與y軸交于點D,點C是二次函數(shù)y=a(x+1)2-4的圖象的頂點,CD=
2

(1)求a的值.
(2)點M在二次函數(shù)y=a(x+1)2-4圖象的對稱軸上,且∠AMC=∠BDO,求點M的坐標(biāo).
(3)將二次函數(shù)y=a(x+1)2-4的圖象向下平移k(k>0)個單位,平移后的圖象與直線CD分別交于E、F兩點(點F在點E左側(cè)),設(shè)平移后的二次函數(shù)的圖象的頂點為C1,與y軸的交點為D1,是否存在實數(shù)k,使得CF⊥FC1?若存在,求出k的值;若不存在,請說明理由.
分析:(1)根據(jù)函數(shù)的解析式,可以直接寫出頂點C的坐標(biāo).
(2)根據(jù)(1)得到的拋物線解析式,能確定點A、B的坐標(biāo),在Rt△OBD中,首先求出∠OBD的正弦值,設(shè)拋物線的對稱軸與x軸的交點為N,若∠AMC=∠BDO,那么它們的正弦值相等,在Rt△AMN中即可求出MN的長,由此得出點M的坐標(biāo).
(3)拋物線在向下平移的過程中,頂點、拋物線與y軸交點同時向下平移了k個單位,由此易發(fā)現(xiàn)四邊形CC1D1D為平行四邊形,進(jìn)一步能推出△CFC1是等腰直角三角形,根據(jù)C、C1兩點的坐標(biāo),結(jié)合等腰直角三角形的性質(zhì)可寫出點F的坐標(biāo),再代入平移后的拋物線解析式中進(jìn)行求解即可.
解答:解:(1)∵C(-1,-4),CD=
2
,
∴D(0,-3)
∴a=1
∴y=(x+1)2-4
即y=x2+2x-3.

(2)如右圖,設(shè)拋物線對稱軸與x軸的交點為N,則N(-1,0);
由(1)的拋物線:y=x2+2x-3,得:A(-3,0)、B(1,0)
在Rt△OBD中,OD=3,OB=1,tan∠BDO=
OB
OD
=
1
3

若∠AMC=∠BDO,則tan∠AMN=tan∠BDO=
1
3
;
在Rt△AMN中,AN=OA-ON=2,MN=AN÷tan∠AMN=6;
故M(-1,6)或(-1,-6).

(3)存在.
∵CC1=DD1=k,CC1∥DD1,
∴四邊形CC1D1D為平行四邊形,
∴C1D1∥CD,
∴∠D1 C1C=∠DCN=45°,
∵CF⊥FC1,
∴∠CC1F=45°
即△CFC1為等腰直角三角形,且CC1=k,
∴F(-
1
2
k-1,-
1
2
k-4),
由點F在新拋物線y=x2+2x-3-k上,
∴(-
1
2
k-1)2+2(-
1
2
k-1)-3-k=-
1
2
k-4,
解得k=2或k=0(舍),
∴k=2.
當(dāng)k=2時,CF⊥FC1
點評:本題考查了二次函數(shù)解析式的確定、函數(shù)圖象的平移、平行四邊形以及等腰直角三角形的性質(zhì)等綜合知識;(3)題的難度較大,能夠準(zhǔn)確判斷出△CFC1的形狀是打開解題思路的關(guān)鍵所在.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•通州區(qū)一模)某地區(qū)準(zhǔn)備修建一座高AB=6m的過街天橋,已知天橋的坡面AC與地面BC的夾角∠ACB的余弦值為
4
5
,則坡面AC的長度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•通州區(qū)一模)已知四邊形ABCD,點E是射線BC上的一個動點(點E不與B、C兩點重合),線段BE的垂直平分線交射線AC于點P,連接DP,PE.
(1)若四邊形ABCD是正方形,猜想PD與PE的關(guān)系,并證明你的結(jié)論.
(2)若四邊形ABCD是矩形,(1)中的PD與PE的關(guān)系還成立嗎?
不成立
不成立
(填:成立或不成立).
(3)若四邊形ABCD是矩形,AB=6,cos∠ACD=
3
5
,設(shè)AP=x,△PCE的面積為y,當(dāng)AP>
1
2
AC時,求y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•通州區(qū)一模)如圖,BD是⊙O的弦,點C在BD上,以BC為邊作等邊三角形△ABC,點A在圓內(nèi),且AC恰好經(jīng)過點O,其中BC=12,OA=8,則BD的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•通州區(qū)一模)解不等式組
2x+5>1
3x-4≤5
,并寫出它的整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•通州區(qū)一模)已知二次函數(shù)y=-x2+2ax-4a+8
(1)求證:無論a為任何實數(shù),二次函數(shù)的圖象與x軸總有兩個交點.
(2)當(dāng)x≥2時,函數(shù)值y隨x的增大而減小,求a的取值范圍.
(3)以二次函數(shù)y=-x2+2ax-4a+8圖象的頂點A為一個頂點作該二次函數(shù)圖象的內(nèi)接正三角形AMN(M,N兩點在二次函數(shù)的圖象上),請問:△AMN的面積是與a無關(guān)的定值嗎?若是,請求出這個定值;若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案