【題目】如圖,ABC 內(nèi)接于半O,AB 為直徑,弦 AD 平分CAB,DE O 于點(diǎn) D

1 求證:DEBC

2 ADBC,O 半徑為 2,求CAD 與弧CD圍成區(qū)域的面積.

【答案】(1)詳見(jiàn)解析;(2).

【解析】

(1)連接OD.只要證明DE⊥OD,BC⊥OD即可解決問(wèn)題;

(2)只要證明△COD是等邊三角形,可得∠CDO=∠DOB=60°,推出CD∥AB,推出SACD=SCOD,可得∠CAD圍成區(qū)域的面積=扇形OCD的面積,由此即可解決問(wèn)題

(1)證明:連接OD.

∵DE⊙O切線,

∴OD⊥DE,

∵AD平分∠CAB,

∴∠DAC=∠DAB,

=,

∴OD⊥BC,

∴DE∥BC.

(2)∵AD=BC,

=

=,∵=

==,

∴∠COD=∠BOD=60°,

∵OC=OD,

∴△COD是等邊三角形,

∴∠CDO=∠DOB=60°,

∴CD∥AB,

∴SACD=SCOD,

∴∠CAD圍成區(qū)域的面積=扇形OCD的面積==π.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線與直線交于點(diǎn)A,點(diǎn)A的橫坐標(biāo)為,且直線與x軸交于點(diǎn)B,與y軸交于點(diǎn)D,直線與y軸交于點(diǎn)C.

(1)求點(diǎn)A的坐標(biāo)及直線的函數(shù)表達(dá)式;

(2)連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是小朋友蕩秋千的側(cè)面示意圖,靜止時(shí)秋千位于鉛垂線上,轉(zhuǎn)軸到地面的距離 ,小亮在蕩秋千過(guò)程中,當(dāng)秋千擺動(dòng)到最高點(diǎn)時(shí),測(cè)得點(diǎn)的距離,點(diǎn)到地面的距離:當(dāng)他從處擺動(dòng)到處時(shí),有

1)求的距離;

2)求到地面的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠ABC=72°,BD、CE分別是△ABC、△BCD的角平分線.則圖中的等腰三角形有( )

A.5個(gè)B.4個(gè)C.3個(gè)D.2個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,公路上有三個(gè)車(chē)站,一輛汽車(chē)從站以速度勻速駛向站,到達(dá)站后不停留,以速度勻速駛向站,汽車(chē)行駛路程(千米)與行駛時(shí)間(小時(shí))之間的函數(shù)圖象如圖2所示.

(1)之間的函數(shù)關(guān)系式及自變量的取值范圍.

(2)汽車(chē)距離C20千米時(shí)已行駛了多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,∠ABC=90°,AD∥BC,以AB為直徑作⊙O恰好與CD相切.

(1)求證:AD+BC=CD;

(2)若EOA的中點(diǎn),連結(jié)CE并延長(zhǎng)交DA的延長(zhǎng)線于F,當(dāng)AE=AF時(shí),求sin∠DCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下列材料:我們已經(jīng)學(xué)過(guò)將一個(gè)多項(xiàng)式分解因式的方法有提公因式法和運(yùn)用公式法,其實(shí)分解因式的方法還有分組分解法、十字相乘法等等,其中十字相乘法在高中應(yīng)用較多.

十字相乘法:先分解二次項(xiàng)系數(shù),分別寫(xiě)在十字交叉線的左上角和左下角;再分解常數(shù)項(xiàng),分別寫(xiě)在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項(xiàng)系數(shù)(如圖),如:將式子分解因式,如圖:

;

請(qǐng)你仿照以上方法,探索解決下列問(wèn)題:

1)分解因式:;

2)分解因式:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的轉(zhuǎn)盤(pán),分成三個(gè)相同的扇形,指針位置固定轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢,并相?yīng)得到一個(gè)數(shù)(指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形).

(1)求事件轉(zhuǎn)動(dòng)一次,得到的數(shù)恰好是0”發(fā)生的概率;

(2)寫(xiě)出此情景下一個(gè)不可能發(fā)生的事件.

(3)用樹(shù)狀圖或列表法,求事件轉(zhuǎn)動(dòng)兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對(duì)值相等發(fā)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ADB≌△EDBBDE≌△CDE,B,EC在一條直線上.下列結(jié)論:①BD是∠ABE的平分線;②ABAC;③∠C=30°;④線段DEBDC的中線;⑤AD+BD=AC.其中正確的有( )個(gè).

A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案