【題目】如圖,正方形ABCD的邊長(zhǎng)為3E,F 分別是AB,BC邊上的點(diǎn),且∠EDF=45°.△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.

1)求證:EF=FM;

2)當(dāng)AE=1時(shí),求EF的長(zhǎng).

【答案】(1)證明見(jiàn)解析(2)

【解析】試題分析:(1)由旋轉(zhuǎn)的性質(zhì)可知,DE=DM,∠EDM=90°,因?yàn)?/span>∠EDF=45°,所以∠FDM=∠EDM=45°,通過(guò)證明△DEF≌△DMF得到EF=MF;

2)設(shè)EF=MF=x,則BF=4-x,BE=2,在Rt△EBF中,由勾股定理得到關(guān)于x的等式,解得x的值即可.

試題解析:(1)證明:∵△DAE逆時(shí)針旋轉(zhuǎn)90°得到△DCM,

∴DE=DM,∠EDM=90°,

∴∠EDF+∠FDM=90°

∵∠EDF=45°,

∴∠FDM=∠EDM=45°,

△DEF△DMF中,

DE=DM,∠EDF=∠MDF,DF=DF,

∴△DEF≌△DMFSAS),

∴EF=MF

2)設(shè)EF=MF=x, ∵AE=CM=1,且BC=3,

∴BM=BC+CM=3+1=4,

∴BF=BM-MF=BM-EF=4-x

∵EB=AB-AE=3-1=2,

Rt△EBF中,由勾股定理得EB+BF=EF, 即2+4-x=x

解得:x=, 則EF=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在ABC,AB=BC=8cmABC=90°,點(diǎn)E以每秒1cm/s的速度由A向點(diǎn)B運(yùn)動(dòng),EDAC于點(diǎn)D,點(diǎn)MEC的中點(diǎn)

1)求證BMD為等腰直角三角形

2)當(dāng)點(diǎn)E運(yùn)動(dòng)多少秒時(shí),BMD的面積為12.5cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是(
A.兩個(gè)數(shù)的差一定小于被減數(shù)
B.若兩數(shù)的差為0,則這兩數(shù)必相等
C.兩個(gè)相反數(shù)相減必為0
D.若兩數(shù)的差為正數(shù),則此兩數(shù)都是正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 的直徑,點(diǎn)上一點(diǎn),若∠BAC=∠CAM,過(guò)點(diǎn)作直線垂直于射線AM,垂足為點(diǎn)D.

(1)試判斷的位置關(guān)系,并說(shuō)明理由;

(2)若直線的延長(zhǎng)線相交于點(diǎn), 的半徑為3,并且.求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一條道路上,甲車從A地到B地,乙車從B地到A地,乙先出發(fā),圖中的折線段表示甲、乙兩車之間的距離y(千米)與行駛時(shí)間x(小時(shí))的函數(shù)關(guān)系的圖象下列說(shuō)法錯(cuò)誤的是( )

A. 乙先出發(fā)的時(shí)間為0.5小時(shí) B. 甲的速度是80千米/小時(shí)

C. 甲出發(fā)0.75小時(shí)后兩車相遇 D. 甲到B地比乙到A地遲5分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,兩點(diǎn).

(1)求m、k、b的值;

(2)連接OA、OB,計(jì)算三角形OAB的面積;

(3)結(jié)合圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再計(jì)算: (b2a) (b2a)(b3a)2,其中a=-1b=-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有四包真空小包裝火腿,每包以標(biāo)準(zhǔn)克數(shù)(450克)為基準(zhǔn),超過(guò)的克數(shù)記作正數(shù),不足的克數(shù)記作負(fù)數(shù),以下數(shù)據(jù)是記錄結(jié)果,其中表示實(shí)際克數(shù)最接近標(biāo)準(zhǔn)克數(shù)的是( )
A.+2
B.-3
C.+3
D.+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若(x+2)(xn)=x2+mx+8,則m+n的值為

A. 2B. 10C. -10D. -2

查看答案和解析>>

同步練習(xí)冊(cè)答案