如圖,AB是圓O的直徑,CD與圓O相切于點(diǎn)C,AE⊥CD于E,延長(zhǎng)BC與AE交于點(diǎn)F,且AF=BF,求∠A的度數(shù).

【答案】分析:由CD為圓O的切線,根據(jù)切線的性質(zhì)得到OC垂直于CD,又AE也垂直于CD,根據(jù)平面內(nèi)垂直于同一條直線的兩直線平行,得到OC平行AF,因?yàn)锳B為直徑,所以O(shè)為AB中點(diǎn),根據(jù)平行線等分線段定理得到C為BF中點(diǎn),則OC為三角形ABF的中位線,根據(jù)中位線定理得到OC等于AF的一半,由OC等于AB的一半,得到AB與AF相等,又AF與BF相等,得到三角形ABF為等邊三角形,進(jìn)而得到∠A的度數(shù).
解答:解:∵CD與圓O相切,
∴OC⊥CD,
∴∠OCD=90°,(2分)
∵AE⊥CD,∴∠AED=90°,
∴OC∥AF,(2分)
∵O是AB的中點(diǎn),
,(2分)
AF=2OC=AB,(2分)
∵AF=BF,
∴AF=BF=AB,
∴△ABF是等邊三角形,
∴∠A=60°(2分)
點(diǎn)評(píng):本題考查了圓的切線性質(zhì)、等邊三角形的判斷與性質(zhì)及三角形中位線定理等知識(shí).運(yùn)用切線的性質(zhì)及平行線等分線段定理得到△ABF是等邊三角形是本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-
3
3
x+2與y軸的交點(diǎn)A和點(diǎn)M(-
3
2
,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的精英家教網(wǎng)四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第6章《二次函數(shù)》中考題集(38):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第27章《二次函數(shù)》中考題集(37):27.3 實(shí)踐與探索(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年四川省眉山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•眉山)如圖,在平面直角坐標(biāo)系內(nèi),以y軸為對(duì)稱軸的拋物線經(jīng)過(guò)直y=-x+2與y軸的交點(diǎn)A和點(diǎn)M(-,0).
(1)求這條拋物線所對(duì)應(yīng)的二次函數(shù)的關(guān)系式;
(2)將(1)中所求拋物線沿x軸向右平移.①在題目所給的圖中畫出沿x軸平移后經(jīng)過(guò)原點(diǎn)的拋物線大致圖象;②設(shè)沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸與直線AB相交于C點(diǎn).判斷以O(shè)為圓心,OC為半徑的圓與直線AB的位置關(guān)系,并說(shuō)明理由;
(3)P點(diǎn)是沿x軸向右平移后經(jīng)過(guò)原點(diǎn)的拋物線對(duì)稱軸上的點(diǎn),求P點(diǎn)的坐標(biāo),使得以O(shè),A,C,P四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案