如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD=a,過點(diǎn)D作DE垂直O(jiān)A的延長線交于點(diǎn)E.
(1)證明:△OAB∽△EDA;
(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?請(qǐng)說明理由,并求出此時(shí)點(diǎn)C到OE的距離.

【答案】分析:(1)由于四邊形ABCD是矩形,則∠BAD=90°,那么∠OBA、∠DAE同為∠BAO的余角,即∠OBA=∠DAE,而∠BOA、∠DEA都是直角,由此可證得△OAB∽△EDA.
(2)若△OAB與△EDA全等,則AB=AD,在Rt△OAB中,利用勾股定理易求得AB=5,那么a=AD=AB=5;
求C到OE的距離,可過C作CH⊥OE于H,過B作BF⊥CH于F;那么CH就是所求的距離,通過上面的解題思路,易證得△CBF≌△ABO,得CH=OA=4,BO=BF,那么四邊形BOHF是正方形,由此可得FH=BO=3,根據(jù)CH=CF+FH即可求得C到OE的距離.
解答:(1)證明:如圖所示,
∵OA⊥OB,
∴∠1+∠2=90°,
又∵四邊形ABCD是矩形,
∴∠BAD=90°,
∴∠2+∠3=90°,
∴∠1=∠3,(1分)
∵OA⊥OB,OE⊥OA,
∴∠BOA=∠DEA=90°,(2分)
∴△OAB∽△EDA.(3分)

(2)解:在Rt△OAB中,AB==5,(4分)
由(1)可知∠1=∠3,∠BOA=∠DEA=90°,
∴當(dāng)a=AD=AB=5時(shí),△AOB與△EDA全等.(5分)
當(dāng)a=AD=AB=5時(shí),可知矩形ABCD為正方形,
∴BC=AB,如圖,過點(diǎn)C作CH⊥OE交OE于點(diǎn)H,
則CH就是點(diǎn)C到OE的距離,過點(diǎn)B作BF⊥CH交CH于點(diǎn)F,
則∠4與∠5互余,∠1與∠5互余,
∴∠1=∠4,(6分)
又∵∠BFC=∠BOA,BC=AB,
∴△OAB≌△FCB(AAS),(7分)
∴CF=OA=4,BO=BF.
∴四邊形OHFB為正方形,
∴HF=OB=3,
∴點(diǎn)C到OE的距離CH=CF+HF=4+3=7.(8分)
點(diǎn)評(píng):此題主要考查了矩形、正方形的性質(zhì),相似三角形、全等三角形的判定和性質(zhì),難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知OA=OB,數(shù)軸上點(diǎn)C表示的數(shù)是2,那數(shù)軸上線段AC的長度是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,已知OA=OB,點(diǎn)C在OA上,點(diǎn)D在OB上,OC=OD,AD與BC相交于點(diǎn)E,那么圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD=a,過點(diǎn)D作DE垂直O(jiān)A的延精英家教網(wǎng)長線交于點(diǎn)E.
(1)證明:△OAB∽△EDA;
(2)當(dāng)a為何值時(shí),△OAB與△EDA全等?請(qǐng)說明理由,并求出此時(shí)點(diǎn)C到OE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知OA=OB,那么數(shù)軸上點(diǎn)A與點(diǎn)C的距離是
 
個(gè)單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知OA=OB,OC=OD,下列結(jié)論中(1)∠A=∠B;(2)DE=CE;(3)連OE,OE平分∠O,正確的有
(1)、(2)、(3)
(1)、(2)、(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案