【題目】請(qǐng)把下面證明過程補(bǔ)充完整:

已知:如圖,∠ADCABCBE、DF分別平行∠ABC、ADC,且∠12

求證:∠AC

證明:因?yàn)?/span>BE、DF分別平分∠ABC、ADC,(   ).

所以∠1ABC,3ADC   ).

因?yàn)椤?/span>ABCADC(已知),

所以∠13   ),

因?yàn)椤?/span>12(已知),

所以∠23   ).

所以         ).

所以∠A   180°,C   180°   ).

所以∠AC   ).

【答案】已知,角平分線的定義,等式的性質(zhì),等量代換,等量代換,AB∥CD,內(nèi)錯(cuò)角相等,兩直線平行,ADC,ABC,兩直線平行,同旁內(nèi)角互補(bǔ),等式的性質(zhì).

【解析】試題分析: 根據(jù)角平分線的定義以及平行線的性質(zhì),即可得到∠ABC=∠ADC,根據(jù)平行線的判定與性質(zhì),依據(jù)等角的補(bǔ)角相等即可證得.

試題解析:BE,DF分別平分∠ABC,ADC(已知),

∴∠1=ABC,3=ADC(角平分線的定義),

∵∠ABC=ADC(已知),

ABC=ADC(等式的性質(zhì)),

∴∠1=3(等量代換),

∵∠1=2(已知),

∴∠2=3(等量代換),

ABCD(內(nèi)錯(cuò)角相等,兩直線平行),

∴∠A+ADC=180°,C+ABC=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),

∴∠A=C(等量代換).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,并規(guī)定:每購(gòu)買500元商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針上對(duì)準(zhǔn)500、200、100、50、10的區(qū)域,顧客就可以獲得500元、200元、100元、50元、10元的購(gòu)物券一張(轉(zhuǎn)盤等分成20份)。

(1)小華購(gòu)物450元,他獲得購(gòu)物券的概率是多少?

(2)小麗購(gòu)物600元,那么:

① 她獲得50元購(gòu)物券的概率是多少?

② 她獲得100元以上(包括100元)購(gòu)物券的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一個(gè)直角坐標(biāo)系中作出y=x2,y=x2-1的圖象

(1)分別指出它們的開口方向、對(duì)稱軸以及頂點(diǎn)坐標(biāo);

(2)拋物線y=x2-1與拋物線y=x2有什么關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 平分, 平分, 交于點(diǎn), 的中點(diǎn),連結(jié)

)找出圖中所有的等腰三角形.

)若, ,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊中, 的角平分線, 上一點(diǎn),以為一邊且在下方作等邊,連接

)求證:

)延長(zhǎng), 上一點(diǎn),連接、使,若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,小林同學(xué)想把一張矩形的紙沿對(duì)角線BD對(duì)折,對(duì)折后C點(diǎn)與C′點(diǎn)重合,BCAD相交于E,請(qǐng)你用尺規(guī)作圖的方法作出C′點(diǎn),并保留作圖痕跡.

(2)如圖,已知在ABC中,∠ABC=3C,AD是∠BAC的平分線,BEADE,求證:BE=(AC-AB)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,ABAC,A36°AC的垂直平分線交ABE,D為垂足,連接EC

1)求∠ECD的度數(shù);

2)若CE5,求BC長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCDEC中,AC=BC,DC=EC,ACB=ECD=90°

1)如圖1,當(dāng)點(diǎn)A、CD在同一條直線上時(shí),AC=12,EC=5,

①求證:AFBD; ②求AF的長(zhǎng)度;

2)如圖2,當(dāng)點(diǎn)A、C、D不在同一條直線上時(shí),求證:AFBD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角三角板ABC的直角頂點(diǎn)C在直線DE上,CF平分∠BCD

1)在圖1中,若∠BCE=40°,求∠ACF的度數(shù);

2)在圖1中,若∠BCE=α,直接寫出∠ACF的度數(shù)(用含α的式子表示);

3)將圖1中的三角板ABC繞頂點(diǎn)C旋轉(zhuǎn)至圖2的位置,探究:寫出∠ACF與∠BCE的度數(shù)之間的關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案