【題目】如圖所示,四邊形ABCD中,AC⊥BD于點(diǎn)O,AO=CO=8,BO=DO=6,點(diǎn)P為線段AC上的一個(gè)動點(diǎn)。

⑴ 填空:AD=CD=_____ .

⑵ 過點(diǎn)P分別作PM⊥AD于M點(diǎn),作PH⊥DC于H點(diǎn).連結(jié)PB,在點(diǎn)P運(yùn)動過程中,PM+PH+PB的最小值為____________.

【答案】10 15.6

【解析】

(1)在△AOD中,由勾股定理可求得AD=10,由ACBD,AO=CO,可知DOAC的垂直平分線,由線段垂直平分線的性質(zhì)可知AD=CD=10;

(2)連接DP,根據(jù)題意可知SADP+SCDP=SADC,由三角形的面積公式可知ADPM+DCPH=ACOD,將AC、OD、ADDC的長代入化簡可知PMPH為定值9.6,當(dāng)PB最短時(shí),PM+PH+PB有最小值,由垂線的性質(zhì)可知當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),PB有最小值6,即可得解.

解:(1)ACBD于點(diǎn)O,

∴△AOD為直角三角形.

AD===10

ACBD于點(diǎn)OAO=CO,

AD=CD=10;

(2)如圖所示:連接PD,

SADP+SCDP=SADC

ADPM+DCPH=ACOD,即×10×PM+×10×PH=×16×6,

10×(PM+PH)=16×6,

PM+PH=9.6,

∴當(dāng)PB最短時(shí),PM+PH+PB有最小值.

∵由垂線段最短可知:當(dāng)BPAC時(shí),PB最短,

∴當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),PM+PH+PB有最小,最小值=9.6+6=15.6

故答案為:(1)10;(2)15.6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(﹣1,0),(3,0).對于下列命題:①b+2a=0;②abc>0;③a﹣2b+4c<0;④8a+c>0.其中正確的有( 。﹤(gè).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(﹣3,0)、B0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1、△2、△3、△4、,△16的直角頂點(diǎn)的坐標(biāo)為(  )

A. 60,0 B. 720 C. 67, D. 79,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(2,﹣1),圖象與y軸交于點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn).

(1)求拋物線的解析式;

(2)設(shè)拋物線對稱軸與直線BC交于點(diǎn)D,連接AC、AD,求△ACD的面積;

(3)點(diǎn)E為直線BC上的任意一點(diǎn),過點(diǎn)Ex軸的垂線與拋物線交于點(diǎn)F,問是否存在點(diǎn)E使△DEF為直角三角形?若存在,求出點(diǎn)E坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB⊙O的直徑,點(diǎn)C、D⊙O上,且BC=6cm,AC=8cm,∠ABD=45°

1)求BD的長;

2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC外作兩個(gè)大小不同的等腰直角三角形,其中∠DAB=CAE=90°,AB=AD,AC=AE。連結(jié)DC、BE交于F點(diǎn)。

1)求證:△DAC≌△BAE;

2)求證:DC⊥BE;

3)求證:∠DFA=EFA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組

請結(jié)合題意填空,完成本題的解答。

I)解不等式①,得________________

(Ⅱ)解不等式②,得:_____________________

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:

IV)原不等式組的解集為___________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時(shí),特快車的速度為150千米/小時(shí),甲乙兩地之間的距離為1000千米,兩車同時(shí)出發(fā),則圖中折線大致表示兩車之間的距離y(千米)與快車行駛時(shí)間t(小時(shí))之間的函數(shù)圖象是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)一塊直角三角形木版的一條直角邊AB為3m,面積為6,要把它加工成一個(gè)面積最大的正方形桌面,小明打算按圖進(jìn)行加工,小華準(zhǔn)備按圖進(jìn)行裁料,他們誰的加工方案符合要求?

查看答案和解析>>

同步練習(xí)冊答案