【題目】已知:如圖,平行四邊形各角的平分線分別相交于點.
求證:四邊形是矩形.
【答案】見詳解
【解析】
由于四邊形ABCD是平行四邊形,那么AD∥BC,利用平行線的性質(zhì)可得∠DAB+∠ABC=180°,而AH,BH分別平分∠DAB與∠ABC,則∠HAB=∠DAB,∠HBA=∠ABC,那么有∠HAB+∠HBA=90°,再利用三角形內(nèi)角和定理可知∠H=90°,同理∠HEF=∠DEA=90°,利用三個內(nèi)角等于90°的四邊形是矩形,那么四邊形EFGH是矩形.
證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠DAB+∠ABC=180°,
∵AH,BH分別平分∠DAB與∠ABC,
∴∠HAB=∠DAB,∠HBA=∠ABC,
∴∠HAB+∠HBA=(∠DAB+∠ABC)=×180°=90°,
∴∠H=90°,
同理∠HEF=∠F=90°,
∴四邊形EFGH是矩形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,四邊形TABC的頂點坐標分別為T(1,1),A(2,3),B(3,3),C(4,2).
(1)以點T(1,1)為位似中心,在位似中心的同側(cè)將四邊形TABC放大為原來的2倍,放大后點A,B,C的對應(yīng)點分別為A′,B′,C′畫出四邊形TA′B′C′;
(2)寫出點A′,B′,C′的坐標:
A′ ,B′ ,C′ ;
(3)在(1)中,若D(a,b)為線段AC上任一點,則變化后點D的對應(yīng)點D′的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是正方形ABCD的對角線BD上一點,PE⊥BC于E,PF⊥CD于F,連接EF,給出下列三個結(jié)論:①AP=EF;②△APD一定是等腰三角形;③∠PFE=∠BAP.其中正確結(jié)論的序號是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】臨近期末,歷史老師為了了解所任教的甲、乙兩班學生的歷史基礎(chǔ)知識背誦情況,從甲、乙兩個班學生中分別隨機抽取了20名學生來進行歷史基礎(chǔ)知識背誦檢測,滿分50分,得到學生的分數(shù)相關(guān)數(shù)據(jù)如下:
甲 | 32 | 35 | 46 | 23 | 41 | 49 | 37 | 41 | 36 | 41 |
37 | 44 | 39 | 46 | 46 | 41 | 50 | 43 | 44 | 49 |
乙 | 25 | 34 | 43 | 46 | 35 | 41 | 42 | 46 | 44 | 42 |
47 | 45 | 42 | 34 | 39 | 47 | 49 | 48 | 45 | 42 |
通過整理,分析數(shù)據(jù):兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如下表:
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
甲 | 41 | 41 | |
乙 | 41.8 | 42 |
歷史老師將乙班成績按分數(shù)段(,,,,,表示分數(shù))繪制成扇形統(tǒng)計圖,如圖(不完整)
請回答下列問題:
(1)_______分;
(2)扇形統(tǒng)計圖中,所對應(yīng)的圓心角為________度;
(3)請結(jié)合以上數(shù)據(jù)說明哪個班背誦情況更好(列舉兩條理由即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式;
(2)在y軸上是否存在一點P,使△PBC為等腰三角形.若存在,請求出點P的坐標;
(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到 達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C
處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最
短距離為 ▲ cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,AB是⊙O的直徑,點P在AB的延長線上,弦CE交AB于點,連結(jié)OE,AC,且∠P=∠E,∠POE=2∠CAB.
(1)求證:CE⊥AB;
(2)求證:PC是⊙O的切線;
(3)若BD=2OD,且PB=9,求⊙O的半徑長和tan∠P的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一塊含30°角的直角三角板(如圖),它的斜邊AB=8cm,里面空心△DEF的各邊與△ABC的對應(yīng)邊平行,且各對應(yīng)邊的距離都是1cm,那么△DEF的周長是( )
A、5cm B、6cm C、(6-)cm D、(3+)cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com