如圖,AB是⊙O的直徑,且點(diǎn)C為⊙O上的一點(diǎn),∠BAC=30°,M是OA上一點(diǎn),過M作AB的垂線交AC于點(diǎn)N,交BC的延長線于點(diǎn)E,直線CF交EN于點(diǎn)F,且∠ECF=∠E.
(1)證明:CF是⊙O的切線;
(2)設(shè)⊙O的半徑為1,且AC=CE,求MO的長.

【答案】分析:(1)要證CF為⊙O的切線,只要證明∠OCF=90°即可;
(2)根據(jù)三角函數(shù)求得AC的長,從而可求得BE的長,再利用三角函數(shù)可求出MB的值,從而可得到MO的長.
解答:(1)證明:如圖,連接OC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∵∠BAC=30°,
∴∠ABC=60°;
在Rt△EMB中,∵∠E+∠MBE=90°,
∴∠E=30°;
∵∠E=∠ECF,
∴∠ECF=30°,
∴∠ECF+∠OCB=90°;
∵∠ECF+∠OCB+∠OCF=180°,
∴∠OCF=90°,
∴CF為⊙O的切線;

(2)解:在Rt△ACB中,∠A=30°,∠ACB=90°,
∴AC=ABcos30°=,BC=ABsin30°=1;
∵AC=CE,
∴BE=BC+CE=1+,在Rt△EMB中,∠E=30°,∠BME=90°,
∴MB=BEsin30°=,
∴MO=MB-OB=
點(diǎn)評(píng):本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點(diǎn),連接圓心和這點(diǎn)(即為半徑),再證垂直即可.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時(shí),電線桿的影子BC的長度為4米,則電線桿AB的高度為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請(qǐng)你根據(jù)所標(biāo)示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計(jì),π取3.1416)
(1)計(jì)算出弧AB所對(duì)的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計(jì)算出遮雨罩一個(gè)側(cè)面的面積;(精確到1cm2
(3)制做這個(gè)遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點(diǎn)離水面8m,以水平線AB為x軸,AB的中點(diǎn)為原點(diǎn)建立坐標(biāo)系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當(dāng)陽光與水平線成60°角時(shí),電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習(xí)冊(cè)答案