【題目】如圖,在正方形ABCD中,E、F分別為DC、DA邊上的點,∠EBF=45°,若EF=5,CE=2,則正方形ABCD的邊長為( )
A.8B.6C.D.
【答案】B
【解析】
延長FA到G,使AG=CE,根據(jù)全等三角形的性質(zhì)得到∠CBE=∠ABG,BE=BG,由∠EBF=45°,得到∠GBF=45°,證得△FBE≌△FBG(SAS),得到FG=EF=5,求得AF=3,設正方形ABCD的邊長為x,根據(jù)勾股定理即可得到結(jié)論.
∵在正方形ABCD中,AD=CD=AB=BC,∠D=∠C=∠ABC=∠BAD=90°,
延長FA到G,使AG=CE,
則∠GAB=∠FAB=90°,
∴∠C=∠GAB=90°,
在△BCE與△BAG中,
∴△BCE≌△BAG(SAS),
∴∠CBE=∠ABG,BE=BG,
∵∠EBF=45°,
∴∠GBF=45°,
在△FBE與△FBG中,
∴△FBE≌△FBG(SAS),
∴FG=EF=5,
∴AF=3,
設正方形ABCD的邊長為x,
∴DE=x﹣2,DF=x﹣3,
∴(x﹣2)2+(x﹣3)2=52,
解得:x=6,(負值舍去),
∴正方形ABCD的邊長為6,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E,F分別是邊BC、CD上的點,BE=CF,AF與DE相交于點O,CG⊥DE,垂足為G.,求證:AD=AOAF;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,己知Rt△ABC中,∠C=90°,AC=8,BC=6,點P以每秒1個單位的速度從A向C運動,同時點Q以每秒2個單位的速度從A→B→C方向運動,它們到C點后都停止運動,設點P,Q運動的時間為t秒.
(1)當t=2.5時,PQ= ;
(2)經(jīng)過t秒的運動,求△ABC被直線PQ掃過的面積S與時間t的函數(shù)關(guān)系式;
(3)P,Q兩點在運動過程中,是否存在時間t,使得△PQC為等腰三角形?若存在,求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;
(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設P點的運動時間為t秒,△PAD的面積為S,S關(guān)于t的函數(shù)圖象如圖(2)所示,當P運動到BC中點時,△PAD的面積為( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點F是DA延長線上的一點,過⊙O上一點C作⊙O的切線交DF于點E,AC平分∠FAB
(1)求證:CE⊥DF;(2)若AE=2,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD外側(cè)作直線AP,點B關(guān)于直線AP的對稱點為E,連接BE,DE,其中DE交直線AP于點F.
(1)①依題意補全圖1;
②若∠PAB=20°,求∠ADF的度數(shù);
(2)若設∠PAB=a,且0°<a<90°,求∠ADF的度數(shù)(直接寫出結(jié)果,結(jié)果可用含a的代數(shù)式表示)
(3)如圖2,若45°<∠PAB<90°,用等式表示線段AB、FE、FD之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com