精英家教網(wǎng)如圖,點D,E分別在AB,AC上,且AD=AE,∠BDC=∠CEB.
求證:BD=CE.
分析:首先證明△ADC≌△AEB,推出AB-AD=AC-AE,可得BD=CE.
解答:證明:∵∠ADC+∠BDC=180°,∠BEC+∠AEB=180°,
又∵∠BDC=∠CEB,
∴∠ADC=∠AEB.
在△ADC和△AEB中,
∠A=∠A(公共角)
AD=AE(已知)
∠ADC=∠AEB(已證)
,
∴△ADC≌△AEB(ASA).
∴AB=AC.
∴AB-AD=AC-AE.
即BD=CE.
點評:三角形全等的判定是中考的熱點,一般以考查三角形全等的方法為主,判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點D、E分別在△ABC的邊上AB、AC上,且∠AED=∠ABC,若DE=3,BC=6,AB=8,則AE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點A,B分別在一次函數(shù)y=x,y=8x的圖象上,其橫坐標(biāo)分別為a,b (a>0,b>0 ).若直線AB為一次函數(shù)y=kx+m的圖象,則當(dāng)
b
a
是整數(shù)時,滿足條件的整數(shù)k的值共有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖,點M、N分別在正三角形ABC的BC、CA邊上,且BM=CN,AM、BN交于點Q,求∠AQN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,點D、E分別在∠BAC的邊上,連接DC、BE,若∠B=∠C,那么補充下列一個條件后,仍無法判定△ABE≌△ACD的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A、B分別在直線l1、l2上,過點A作到l2的距離AM,過點B作直線l3∥l1

查看答案和解析>>

同步練習(xí)冊答案