【題目】上海世博會(huì)的某紀(jì)念品原價(jià)168元,連續(xù)兩次降價(jià)a%后售價(jià)為128元,下面所列方程中正確的是
A. 168(1+a%)2=128 B. 168(1-a%)2=128
C. 168(1-2a%)=128 D. 168(1-a2%)=128
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某地區(qū)3500名初中畢業(yè)生的數(shù)學(xué)成績(jī),從中抽出20本試卷,每本30份,其中個(gè)體是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,∠MON=90°,點(diǎn)A、B分別在OM、ON上運(yùn)動(dòng)(不與點(diǎn)O重合).
(1)若BC是∠ABN的平分線,BC的反方向延長(zhǎng)線與∠BAO的平分線交與點(diǎn)D. ①若∠BAO=60°,則∠D=°.
②猜想:∠D的度數(shù)是否隨A,B的移動(dòng)發(fā)生變化?并說(shuō)明理由 .
(2)若∠ABC= ∠ABN,∠BAD= ∠BAO,則∠D=°.
(3)若將“∠MON=90°”改為“∠MON=α(0°<α<180°)”,∠ABC= ∠ABN,∠BAD= ∠BAO,其余條件不變,則∠D=°(用含α、n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=∠D=90°,AE平分∠BAD交CD于點(diǎn)E,過(guò)點(diǎn)C作CF∥AE交AB于點(diǎn)F. 求證:CF平分∠BCD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(x﹣3)(2x+1)=2x2+mx+n,則m,n的值分別是( )
A.5,﹣3
B.﹣5,3
C.﹣5,﹣3
D.5,3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)A(1,3)和B(-3, ).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)點(diǎn)C是平面直角坐標(biāo)系內(nèi)一點(diǎn),BC∥軸,AD⊥BC于點(diǎn)D,連結(jié)AC,若,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,點(diǎn)E在CB的延長(zhǎng)線上,連結(jié)AC、AE,∠ACB=∠BAE=45°.
(1)求證:AE是⊙O的切線;
(2)若AB=AD,AC=,tan∠ADC=3,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,連接四邊形ABCD各邊中點(diǎn),得到四邊形EFGH,還要添加 條件,才能保證四邊形EFGH是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知小正方形的邊長(zhǎng)為2厘米,大正方形的邊長(zhǎng)為4厘米,起始狀態(tài)如圖所示,大正方形固定不動(dòng),把小正方形以1厘米∕秒的速度向右沿直線平移,設(shè)平移的時(shí)間為t秒,兩個(gè)正方形重疊部分的面積為S平方厘米.完成下列問(wèn)題:
(1)當(dāng)t=1.5秒時(shí),S=平方厘米;
(2)當(dāng)S=2時(shí),小正方形平移的時(shí)間為秒.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com