(2007•荊州)如圖在平臺(tái)上用直徑為100mm的兩根圓鋼棒嵌在大型工件的兩側(cè),測(cè)量大的圓形工件的直徑D,測(cè)得兩根圓鋼棒與地的兩個(gè)接觸點(diǎn)之間的距離為400mm,則工件直徑D(mm)用科學(xué)記數(shù)法可表示為( )mm.

A.4×104
B.0.4×105
C.20000
D.4×102
【答案】分析:計(jì)算此題的時(shí)候應(yīng)該結(jié)合圖形,對(duì)圖進(jìn)行分析,然后求解.根據(jù)切線的性質(zhì),垂徑定理求出工件直徑,再用科學(xué)記數(shù)法表示.
解答:解:根據(jù)圖形可知,兩圓相切,
過點(diǎn)O作OP垂直O(jiān)1O2于P,則:PO1=PO2=200
PO=R-50
根據(jù)勾股定理可得:2002+(R-50)2=(R+50)2
解得:R=200
∴D=2R=400=4×102
故選D.
點(diǎn)評(píng):此題考查的是對(duì)圖形的理解,根據(jù)圖形可以列出方程式求出未知數(shù).用科學(xué)記數(shù)法表示數(shù),一定要注意a的形式,以及指數(shù)n的確定方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2007•荊州)如圖,D為反比例函數(shù)y=(k<0)圖象上一點(diǎn),過D作DC⊥y軸于C,DE⊥x軸于E,一次函數(shù)y=-x+m與y=-x+2的圖象都過C點(diǎn),與x軸分別交于A、B兩點(diǎn).若梯形DCAE的面積為4,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省溫州市龍港三中一模試卷(解析版) 題型:解答題

(2007•荊州)如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(2)如圖2,若翻折后點(diǎn)D落在BC邊上,求過點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;
(3)在(2)的情況下,在該拋物線上是否存在點(diǎn)Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年福建省漳州市高中自主招生四校聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•荊州)如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(2)如圖2,若翻折后點(diǎn)D落在BC邊上,求過點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;
(3)在(2)的情況下,在該拋物線上是否存在點(diǎn)Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年湖北省荊州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•荊州)如圖,D為反比例函數(shù)y=(k<0)圖象上一點(diǎn),過D作DC⊥y軸于C,DE⊥x軸于E,一次函數(shù)y=-x+m與y=-x+2的圖象都過C點(diǎn),與x軸分別交于A、B兩點(diǎn).若梯形DCAE的面積為4,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年湖北省荊門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•荊州)如圖1,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合).現(xiàn)將△PAB沿PB翻折,得到△PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將△POE沿PE翻折,得到△PFE,并使直線PD、PF重合.
(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(2)如圖2,若翻折后點(diǎn)D落在BC邊上,求過點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;
(3)在(2)的情況下,在該拋物線上是否存在點(diǎn)Q,使△PEQ是以PE為直角邊的直角三角形?若不存在,說明理由;若存在,求出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案