已知:二次函數(shù)y=x2+2x+a(a為大于0的常數(shù)),當(dāng)x=m時的函數(shù)值y1<0;則當(dāng)x=m+1時的函數(shù)值y2與0的大小關(guān)系為


  1. A.
    y2>0
  2. B.
    y2<0
  3. C.
    y2=0
  4. D.
    不能確定
A
分析:根據(jù)拋物線與x軸的交點情況,判斷a的取值范圍,即0<a<1,已知對稱軸是x=-1,則-2<m<0,0<m+1<2,可判斷當(dāng)x=m+1時,函數(shù)值y2與0的大小關(guān)系為y2>0.
解答:∵拋物線與x軸有兩個交點,
∴△=22-4a>0,即a<1,
又∵a>0,對稱軸為x=-1,
∴-1-<x<-1+時,y<0,
∵當(dāng)x=m時的函數(shù)值y1<0,
故-1-<m<-1+
則當(dāng)x=m+1時,函數(shù)值y2與0的大小關(guān)系為y2>0.
故選A.
點評:本題主要考查二次函數(shù)的性質(zhì)的知識點,解答本題的關(guān)鍵是熟練掌握二次函數(shù)的圖象與性質(zhì),此題難度不大,還可以進(jìn)行數(shù)形結(jié)合進(jìn)行解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:二次函數(shù)的表達(dá)式為y=2x2+4x-1.
(1)設(shè)這個函數(shù)圖象的頂點坐標(biāo)為P,與y軸的交點為A,求P、A兩點的坐標(biāo);
(2)將二次函數(shù)的圖象向上平移1個單位,設(shè)平移后的圖象與x軸的交點為B、C(其中點B在點C的左側(cè)),求B、C兩點的坐標(biāo)及tan∠APB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C,其中點A的坐標(biāo)是(-2,0),點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OC<OB)是方程x2-10x+24=0的兩個根.
(1)求B、C兩點的坐標(biāo);
(2)求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=x2-2(m-1)x-1-m的圖象與x軸交于A(x1,0)、B(x2,0),x1<0<x2,與y軸交于點C,且滿足
1
AO
-
1
OB
=
2
CO

(1)求這個二次函數(shù)的解析式;
(2)是否存在著直線y=kx+b與拋物線交于點P、Q,使y軸平分△CPQ的面積?若存在,求出k、b應(yīng)滿足的條件;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,其中A點坐標(biāo)為(-3,0),與y軸精英家教網(wǎng)交于點C,點D(-2,-3)在拋物線上.
(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點P,求出PA+PD的最小值;
(3)點G拋物線上的動點,在x軸上是否存在點E,使B、D、E、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的E點坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:二次函數(shù)y=ax2+bx+c(a≠0)中的x和y滿足下表:
x 0 1 2 3 4 5
y 3 0 -1 0 m 8
(1)可求得m的值為
3
3

(2)求出這個二次函數(shù)的解析式;
(3)當(dāng)0<x<3時,則y的取值范圍為
-1≤y<3
-1≤y<3

查看答案和解析>>

同步練習(xí)冊答案