9.如圖,在正方形網(wǎng)格上的一個(gè)三角形ABC.(其中點(diǎn)A,B,C均在網(wǎng)格上)
(1)作出把三角形ABC向右平移4個(gè)單位,再向下平移3個(gè)單位后所得到的三角形A1B1C1;
(2)作三角形ABC關(guān)于直線MN對(duì)稱的三角形A2B2C2

分析 (1)根據(jù)點(diǎn)向右平移4個(gè)單位,再向下平移3個(gè)單位,可得A1,B1,C1,可得答案;
(2)根據(jù)軸對(duì)稱的性質(zhì),可得A2,B2,C2,可得答案.

解答 解:如圖1,
(2)如圖2

點(diǎn)評(píng) 本題考查了作圖,利用軸對(duì)稱得出關(guān)鍵點(diǎn)的對(duì)稱點(diǎn)是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知方程組$\left\{\begin{array}{l}{2x+y=5k+6}\\{x-2y=-17}\end{array}\right.$的解x,y都是正數(shù),且x的值小于y的值.
(1)求k的取值范圍;
(2)當(dāng)k為整數(shù)時(shí),設(shè)其所有整數(shù)的和為S,求S的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在平面直角坐標(biāo)系中,二次函數(shù)定點(diǎn)坐標(biāo)為c(4,-$\sqrt{3}$),且在x軸上截得的線段AB為6.
(1)求A,B坐標(biāo);
(2)點(diǎn)p在y上,且使得△PAC周長(zhǎng)最小,求P點(diǎn)坐標(biāo);
(3)在x軸上方的拋物線上是否存在點(diǎn)Q,使得以Q,A,B三點(diǎn)為頂點(diǎn)的三角形與三角形ABC相似?若存在請(qǐng)求出Q點(diǎn)坐標(biāo);不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

17.計(jì)算:
(1)計(jì)算:$\sqrt{25}$-$\root{3}{-27}$+$\sqrt{\frac{1}{4}}$-|1-$\sqrt{3}$|;            
(2)求x的值:16(x+1)2=25.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.先化簡(jiǎn),再求值:
(1)(m+2-$\frac{5}{m-2}$)$•\frac{2m-4}{3-m}$,其中m=$\frac{3}{4}$.
(2)($\frac{{x}^{2}+4}{x}$-4)$÷\frac{{x}^{2}-4}{{x}^{2}+2x}$,其中x=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖,已知點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點(diǎn),現(xiàn)有如下結(jié)論:①∠ABD=∠BDN;②MB=NB;③MB⊥NB;④S△ABM=S△BCN,其中正確的結(jié)論是②③④(只填序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若用初中數(shù)學(xué)課本上使用的科學(xué)計(jì)算器進(jìn)行計(jì)算,則以下按鍵的結(jié)果為-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,在△ABC中,∠BAC=90°,AD⊥BC于D,AC+CD=BD,若CD=1,則BD=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.閱讀與應(yīng)用:閱讀以下材料,并按要求完成相應(yīng)的任務(wù).
中國(guó)最早的一部數(shù)學(xué)著作--《周髀算經(jīng)》的開(kāi)頭,記載著一段周公向商高請(qǐng)教數(shù)學(xué)知識(shí)的對(duì)話:
 周公問(wèn):“我聽(tīng)說(shuō)您對(duì)數(shù)學(xué)非常精通,我想請(qǐng)教一下:天沒(méi)有梯子可以上去,地也沒(méi)法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地的數(shù)據(jù)呢?”商高回答說(shuō):“數(shù)的產(chǎn)生來(lái)源于對(duì)方和圓這些形體的認(rèn)識(shí),其中有一條原理:當(dāng)直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時(shí)候,那么它的斜邊‘弦’就必定是5.這個(gè)原理是大禹在治水的時(shí)候就總結(jié)出來(lái)的呵.”
任務(wù):
(1)上面周公與商高的這段對(duì)話,反映的數(shù)序原理在數(shù)學(xué)上叫做勾股定理;
(2)請(qǐng)你利用以上數(shù)學(xué)原理解決問(wèn)題:“枯木一根直立地上,高二丈,周三尺,有葛藤自根纏繞而上,五周而達(dá)其頂,問(wèn)葛藤之長(zhǎng)幾何?”題意是:如圖所示,把枯木看作一個(gè)圓柱體,因一丈是十尺,則該圓柱的高為20尺,底面周長(zhǎng)為3尺,有葛藤自點(diǎn)A處纏繞而上,繞五周后其末端恰好到達(dá)點(diǎn)B處,求問(wèn)題中葛藤的最短長(zhǎng)度是多少尺.

查看答案和解析>>

同步練習(xí)冊(cè)答案