(2007•南通)如圖,梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一點O為圓心的圓經(jīng)過A、D兩點,且∠AOD=90°,則圓心O到弦AD的距離是( )

A.cm
B.cm
C.cm
D.cm
【答案】分析:易證△AOD是等腰直角三角形.則圓心O到弦AD的距離等于AD,所以可先求AD的長.
解答:解:以BC上一點O為圓心的圓經(jīng)過A、D兩點,則OA=OD,△AOD是等腰直角三角形.
易證△ABO≌△OCD,則OB=CD=4cm.
在直角△ABO中,根據(jù)勾股定理得到OA2=20;
在等腰直角△OAD中,過圓心O作弦AD的垂線OP.
則OP=OA•sin45°=cm.
故選B.
點評:此題涉及圓中求半徑的問題,此類在圓中涉及弦長、半徑、圓心角的計算的問題,常把半弦長,半圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過直角三角形予以求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2007•南通)如圖,在?ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC邊于點E,則EC等于( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(河上鎮(zhèn)中 董勇) (7)(解析版) 題型:填空題

(2007•南通)如圖,已知矩形OABC的面積為,它的對角線OB與雙曲線相交于點D,且OB:OD=5:3,則k=   

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學試卷(瓜瀝一中 沈海虹)(解析版) 題型:填空題

(2007•南通)如圖,已知矩形OABC的面積為,它的對角線OB與雙曲線相交于點D,且OB:OD=5:3,則k=   

查看答案和解析>>

科目:初中數(shù)學 來源:2007年江蘇省南通市中考數(shù)學試卷(解析版) 題型:解答題

(2007•南通)如圖①,在Rt△ABC中,∠BAC=90°,AB=AC=,D、E兩點分別在AC、BC上,且DE∥AB,CD=.將△CDE繞點C順時針旋轉(zhuǎn),得到△CD′E′(如圖②,點D′、E′分別與點D、E對應),點E′在AB上,D′E′與AC相交于點M.
(1)求∠ACE′的度數(shù);
(2)求證:四邊形ABCD′是梯形;
(3)求△AD′M的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年江蘇省南通市中考數(shù)學試卷(解析版) 題型:填空題

(2007•南通)如圖,已知矩形OABC的面積為,它的對角線OB與雙曲線相交于點D,且OB:OD=5:3,則k=   

查看答案和解析>>

同步練習冊答案