矩形OABC在平面直角坐標系中的位置如圖所示,A、C兩點的坐標分別為A(6,0)、C(0,3),直線與BC邊相交于點D.

(1)求點D的坐標;
(2)若拋物線經(jīng)過A、D兩點,試確定此拋物線的解析式;
(3)設(2)中的拋物線的對稱軸與直線AD交于點M,點P為對稱軸上一動點,以P、A、M為頂點的三角形與△ABD相似,求符合條件的所有點P的坐標.
(1)點D的坐標為(2,3);
(2) 拋物線的解析式為;
(3) 符合條件的點P有兩個,P1 (3,0)、P2 (3,-4).

試題分析:(1)有題目所給信息可以知道,BC線上所有的點的縱坐標都是3,又有D在直線上,代入后求解可以得出答案.
(2)A、D,兩點坐標已知,把它們代入二次函數(shù)解析式中,得出兩個二元一次方程,聯(lián)立求解可以得出答案.
(3)由題目分析可以知道∠B=90°,以P、A、M為頂點的三角形與△ABD相似,所以應有∠APM、∠AMP或者∠MAP等于90°,很明顯∠AMP不可能等于90°,所以有兩種情況.
解:(1) ∵四邊形OABC為矩形,C(0,3)
∴BC∥OA,點D的縱坐標為3.
∵直線與BC邊相交于點D,
. ∴點D的坐標為(2,3).
(2) ∵若拋物線經(jīng)過A(6,0)、D(2,3)兩點,

解得:∴拋物線的解析式為
(3) ∵拋物線的對稱軸為x=3,
設對稱軸x=3與x軸交于點P1,∴BA∥MP1,
∴∠BAD=∠AMP1.

①∵∠AP1M=∠ABD=90°,∴△ABD∽△AMP1.
∴P1 (3,0).
②當∠MAP2=∠ABD=90°時,△ABD∽△MAP2.
∴∠AP2M=∠ADB
∵AP1=AB,∠AP1 P2=∠ABD=90°
∴△AP1 P2≌△ABD
∴P1 P2=BD=4
∵點P2在第四象限,∴P2 (3,-4). 
∴符合條件的點P有兩個,P1 (3,0)、P2 (3,-4).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

一家化工廠原來每月利潤為120萬元,從今年1月起安裝使用回收凈化設備(安裝時間不計),一方面改善了環(huán)境,另一方面大大降低原料成本.據(jù)測算,使用回收凈化設備后的1至x月(1≤x≤12)的利潤的月平均值w(萬元)滿足w=10x+90,第二年的月利潤穩(wěn)定在第1年的第12個月的水平.
(1)設使用回收凈化設備后的1至x月(1≤x≤12)的利潤和為y,寫出y關于x的函數(shù)關系式,并求前幾個月的利潤和等于700萬元;
(2)當x為何值時,使用回收凈化設備后的1至x月的利潤和與不安裝回收凈化設備時x個月的利潤和相等;
(3)求使用回收凈化設備后兩年的利潤總和.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=2x2﹣2與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C.

(1)寫出以A,B,C為頂點的三角形面積;
(2)過點E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(點M在點N的左側),以MN為一邊,拋物線上的任一點P為另一頂點做平行四邊形,當平行四邊形的面積為8時,求出點P的坐標;
(3)過點D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點Q(點Q在第一象限),使得以Q,D,B為頂點的三角形和以B,C,O為頂點的三角形相似,求線段QD的長(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

把拋物線y=x2向左平移1個單位,所得的新拋物線的函數(shù)表達式為( )
A.y=x2+1B.y=(x+1) 2C.y=x2-1D.y=(x-1) 2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,用長為20米的籬笆恰好圍成一個扇形花壇,且扇形花壇的圓心角小于180°,設扇形花壇的半徑為米,面積為平方米.(注:的近似值取3)

(1)求出的函數(shù)關系式,并寫出自變量的取值范圍;
(2)當半徑為何值時,扇形花壇的面積最大,并求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

關于二次函數(shù)y=x2-4x+3,下列說法錯誤的是(        )
A.當x<1時,y隨x的增大而減小B.它的圖象與x軸有交點
C.當1<x<3時,y>0D.頂點坐標為(2,-1 )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若二次函數(shù)的圖象經(jīng)過點P(-3,2),則該圖象必經(jīng)過點(   )
A.(2,3) B.(-2,-3)C.(3,2)D.(-3,-2)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

次函數(shù)取最大值時,x=                  .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù)的最小值是           

查看答案和解析>>

同步練習冊答案