已知:如圖,C為半圓O上一點(diǎn), AC= CE,過(guò)點(diǎn)C作直徑AB的垂線CP,弦AE分別交PC、CB于點(diǎn)D、F.

(1)       求證:AD=CD;

(2)       若DF=,∠CAE=30°,求陰影部分的面積.

 


(1)證明:∵弧AC=弧CE

∴ ∠CAE=∠B.

∵CP⊥AB,

∴∠CPB=90°.

∴∠B+∠BCP=90°.

∵AB是直徑,

∴∠ACB=90°.

∴∠ACP+∠BCP=90°

∴∠B=∠ACP.

∴∠CAE=∠ACP. 

∴AD=CD.

(2)解:連結(jié)OC.

       ∵∠CAE=30°,

       ∴∠ACD=30°,∠COA=60°.

       ∴∠CDF=60°.

∵AB是直徑,∴∠ACB=90°.

       ∴∠BCP=60°.

       ∴∠BCP=∠DCF=∠CFD=60°.

      ∴AD=CD=DF=

∵OA=OC, ∴△AOC是等邊三角形.

       ∴∠CAO=60°.

       ∴∠DAP=30°.

∵CP⊥OA,

       ∴AP=ADcos30°=2

∴OA=2AP=4.

        ∴DP=ADsin30°=

       ∴CP=CD+DP=2

∴S陰影=S扇形-S△AOC=-=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知.如圖,BC為半圓O的直徑,F(xiàn)是半圓上異于B、C的一點(diǎn),A是
BF
的中點(diǎn),AD⊥BC于點(diǎn)D,BF交精英家教網(wǎng)AD于點(diǎn)E.
(1)求證:BE•BF=BD•BC;
(2)試比較線段BD與AE的大小,并說(shuō)明道理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,BC為半圓的直徑,O為圓心,D是弧AC的中點(diǎn),四邊形ABCD的對(duì)角線AC、BD交于精英家教網(wǎng)點(diǎn)E.
(1)求證:△ABE∽△DBC;
(2)已知BC=
5
2
,CD=
5
2
,求sin∠AEB的值;
(3)在(2)的條件下,求弦AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,C為半圓O上一點(diǎn),AC=CE,過(guò)點(diǎn)C作直徑AB的垂線CP,弦AE分別交PC、CB于點(diǎn)精英家教網(wǎng)D、F.
(1)求證:AD=CD;
(2)若DF=
4
3
3
,∠CAE=30°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB為半圓的直徑,弦CD∥AB,∠CAD=30°,若AB長(zhǎng)為8cm,求△ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AB為半圓的直徑,O為圓心,C為半圓上一點(diǎn),OE⊥弦AC于點(diǎn)D,交⊙O于點(diǎn)E.若AC=8cm,DE=2cm.求OD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案