【題目】如圖,在△ABC中,AD平分∠BAC交BC于點(diǎn)D,點(diǎn)F在BA的延長(zhǎng)線上,點(diǎn)E在線段CD上,EF與AC相交于點(diǎn)G,AD∥EF.
(1)求證:∠BDA+∠CEG=180°;
(2)若點(diǎn)H在FE的延長(zhǎng)線上,且∠F=∠H,則∠EDH與∠C相等嗎,請(qǐng)說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)相等,理由見(jiàn)解析.
【解析】
(1)根據(jù)平行線的性質(zhì)和鄰補(bǔ)角的定義結(jié)合已知條件分析解答即可;
(2)由AD平分∠BAC結(jié)合AD∥EF證得∠F=∠EGC,這樣結(jié)合∠F=∠H即可得到∠H=∠EGC,由此證得AC∥DH即可得到∠EDG=∠C.
(1)∵AD∥EF,
∴∠BDA=∠BEF,
又∵∠BEF+∠CEG=180°,
∴∠BDA+∠CEG=180°;
(2)∠EDH=∠C,理由如下:
∵AD平分∠BAC交BC于點(diǎn)D,
∴∠BAD=∠CAD,
∵AD∥EF,
∴∠BAD=∠F,∠DAC=∠EGC,
∴∠F=∠EGC,
又∵∠H=∠F,
∴∠H=∠EGC.
∴HD∥AC,
∴∠EDH=∠C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為了吸引顧客,設(shè)計(jì)了一種促銷(xiāo)活動(dòng).在一個(gè)不透明的箱子里放有4個(gè)完全相同的小球,球上分別標(biāo)有“0元”、“10元”、“30元”和“50元”的字樣.規(guī)定:顧客在本商場(chǎng)同一日內(nèi),消費(fèi)每滿300元,就可以從箱子里先后摸出兩個(gè)球(每次只摸出一個(gè)球,第一次摸出后不放回).商場(chǎng)根據(jù)兩個(gè)小球所標(biāo)金額之和返還相應(yīng)價(jià)格的購(gòu)物券,可以重新在本商場(chǎng)消費(fèi).某顧客消費(fèi)剛好滿300元,則在本次消費(fèi)中:
(1)該顧客至少可得元購(gòu)物券,至多可得元購(gòu)物券;
(2)請(qǐng)用畫(huà)樹(shù)狀圖或列表法,求出該顧客所獲購(gòu)物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:一粒米微不足道,平時(shí)在飯桌上總會(huì)毫不經(jīng)意地掉下幾粒,甚至有些挑食的同學(xué)把整碗米飯倒掉.針對(duì)這種浪費(fèi)糧食現(xiàn)象,老師組織同學(xué)們進(jìn)行了實(shí)際測(cè)算,稱得粒大米約重克.
嘗試解決:
粒米重約多少克?
按我國(guó)現(xiàn)有人口億,每年天,每人每天三餐計(jì)算,若每人每餐節(jié)約粒大米,一年大約能節(jié)約大米多少千克?(結(jié)果用科學(xué)記數(shù)法表示)
假設(shè)我們把一年節(jié)約的大米賣(mài)成錢(qián),按每千克元計(jì)算,可賣(mài)得人民幣多少元?(結(jié)果用科學(xué)記數(shù)法表示,保留到)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線BD經(jīng)過(guò)坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)y= 的圖象上,若點(diǎn)A的坐標(biāo)為(﹣2,﹣3),則k的值為( )
A.1
B.﹣5
C.4
D.1或﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在的正半軸上,點(diǎn)B的坐標(biāo)為(3,4)一次函數(shù)的圖象與邊OC、AB分別交于點(diǎn)D、E,并且滿足OD= BE.點(diǎn)M是線段DE上的一個(gè)動(dòng)點(diǎn).
(1)求b的值;
(2)連結(jié)OM,若三角形ODM的面積與四邊形OAEM的面積之比為1:3,求點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)N是軸上方平面內(nèi)的一點(diǎn),以O(shè)、D、M、N為頂點(diǎn)的四邊形是菱形,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們規(guī)定:有理數(shù)xA用數(shù)軸上點(diǎn)A表示,xA叫做點(diǎn)A在數(shù)軸上的坐標(biāo);有理數(shù)xB用數(shù)軸上點(diǎn)B表示,xB叫做點(diǎn)B在數(shù)軸上的坐標(biāo).|AB|表示數(shù)軸上的兩點(diǎn)A,B之間的距離.
(1)借助數(shù)軸,完成下表:
xA | xB | xA﹣xB | |AB| |
3 | 2 | 1 | 1 |
1 | 5 |
|
|
2 | ﹣3 |
|
|
﹣4 | 1 |
|
|
﹣5 | ﹣2 |
|
|
﹣3 | ﹣6 |
|
|
(2)觀察(1)中的表格內(nèi)容,猜想|AB|= ;(用含xA,xB的式子表示,不用說(shuō)理)
(3)已知點(diǎn)A在數(shù)軸上的坐標(biāo)是﹣2,且|AB|=8,利用(2)中的結(jié)論求點(diǎn)B在數(shù)軸上的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解本校學(xué)生對(duì)球類(lèi)運(yùn)動(dòng)的愛(ài)好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個(gè)方面調(diào)查了若干名學(xué)生,在還沒(méi)有繪制成功的“折線統(tǒng)計(jì)圖”與“扇形統(tǒng)計(jì)圖”中,請(qǐng)你根據(jù)已提供的部分信息解答下列問(wèn)題.
(1)在這次調(diào)查活動(dòng)中,一共調(diào)查了名學(xué)生,并請(qǐng)補(bǔ)全統(tǒng)計(jì)圖.
(2)“羽毛球”所在的扇形的圓心角是度.
(3)若該校有學(xué)生1200名,估計(jì)愛(ài)好乒乓球運(yùn)動(dòng)的約有多少名學(xué)生?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,∠B=45°,BC=10 cm,過(guò)點(diǎn)A作AD∥BC,且點(diǎn)D在點(diǎn)A的右側(cè).點(diǎn)P從點(diǎn)A出發(fā)沿射線AD方向以每秒1cm的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿射線CB方向以每秒2cm的速度運(yùn)動(dòng),在線段QC上取點(diǎn)E,使得QE =2cm,連結(jié)PE,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)①CE= (用含t的式子表示)
②若PE⊥BC,求BQ的長(zhǎng);
(2)請(qǐng)問(wèn)是否存在t的值,使以A,B,E,P為頂點(diǎn)的四邊形為平行四邊形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有兩個(gè)不透明的乒乓球盒,甲盒中裝有1個(gè)白球和2個(gè)紅球,乙盒中裝有2個(gè)白球和若干個(gè)紅球,這些小球除顏色不同外,其余均相同.若從乙盒中隨機(jī)摸出一個(gè)球,摸到紅球的概率為 .
(1)求乙盒中紅球的個(gè)數(shù);
(2)若先從甲盒中隨機(jī)摸出一個(gè)球,再?gòu)囊液兄须S機(jī)摸出一個(gè)球,請(qǐng)用樹(shù)形圖或列表法求兩次摸到不同顏色的球的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com