【題目】兩地相距300,甲、乙兩車同時(shí)從地出發(fā)駛向地,甲車到達(dá)地后立即返回,如圖是兩車離地的距離()與行駛時(shí)間()之間的函數(shù)圖象.
(1)求甲車行駛過程中與之間的函數(shù)解析式,并寫出自變量的取值范圍.
(2)若兩車行駛5相遇,求乙車的速度.
【答案】(1);(2)40千米/小時(shí).
【解析】
(1)甲車行駛過程中y與x之間的函數(shù)解析式兩種,即從A地到B地是正比例函數(shù),返回時(shí)是一次函數(shù),自變量的取值范圍分別為 (0<x≤4)和( 4<x≤7),
(2)求出乙車的y與x的關(guān)系式,再與甲車返回時(shí)的關(guān)系式組成方程組解出即可.
解:(1)設(shè)甲車從A地駛向B地y與x的關(guān)系式為y=kx,把(4,300)代入得:
300=4k,解得:k=75,
∴y=75x (0<x≤4)
設(shè)甲車從B地返回A地y與x的關(guān)系式為y=kx+b,把(4,300)(7,0)代入得:
,
解得:k=-100,b=700,
∴y=-100x+700 (4<x≤7),
答:甲車行駛過程中y與x之間的函數(shù)解析式為: ,
(2)設(shè)乙車速度為m千米/小時(shí),依據(jù)兩車行駛5相遇,在甲車返回時(shí)相遇,即甲乙兩車離A的距離相等,得:5m=-100×5+700
解得:m=40
答:乙車的速度為40千米/小時(shí).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形OABC在平面直角坐標(biāo)系內(nèi)的位置如圖所示,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B的坐標(biāo)為(10,8),已知直線AC與雙曲線y=(m≠0)在第一象限內(nèi)有一交點(diǎn)Q(5,n).
(1)求直線AC和雙曲線的解析式;
(2)若動點(diǎn)P從A點(diǎn)出發(fā),沿折線AO→OC的路徑以每秒2個(gè)單位長度的速度運(yùn)動,到達(dá)C處停止.求△OPQ的面積S與的運(yùn)動時(shí)間t秒的函數(shù)關(guān)系式,并求當(dāng)t取何值時(shí)S=10.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC交AC的延長線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AB=10,AC=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣4與x軸交于點(diǎn)A,以OA為斜邊在x軸上方作等腰Rt△OAB,并將Rt△AOB沿x軸向右平移,當(dāng)點(diǎn)B落在直線y=x﹣4上時(shí),Rt△OAB掃過的面積是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△AOB中,∠AOB=90°,點(diǎn)A的坐標(biāo)為(4,2),BO=4,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)B,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,直線BM⊥AB于點(diǎn)B,點(diǎn)C在⊙O上,分別連接BC,AC,且AC的延長線交BM于點(diǎn)D,CF為⊙O的切線交BM于點(diǎn)F.
(1)求證:CF=DF;
(2)連接OF,若AB=10,BC=6,求線段OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,點(diǎn)為延長線上一點(diǎn)且,連接,在上截取,使,過點(diǎn)作平分,,分別交于點(diǎn)、.連接.
(1)若,求的長;
(2)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比等腰三角形的定義,我們定義:有三條邊相等的凸四邊形叫做“準(zhǔn)等邊四邊形”.
(1)已知:如圖1,在“準(zhǔn)等邊四邊形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC的長;
(2)在探究性質(zhì)時(shí),小明發(fā)現(xiàn)一個(gè)結(jié)論:對角線互相垂直的“準(zhǔn)等邊四邊形”是菱形.請你判斷此結(jié)論是否正確,若正確,請說明理由;若不正確,請舉出反例;
(3)如圖2,在△ABC中,AB=AC=,∠BAC=90°.在AB的垂直平分線上是否存在點(diǎn)P,使得以A,B,C,P為頂點(diǎn)的四邊形為“準(zhǔn)等邊四邊形”. 若存在,請求出該“準(zhǔn)等邊四邊形”的面積;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com