【題目】如圖所示的正方形網(wǎng)格中,△ABC 的頂點均在格點上,請在所給直角坐標系中按要求畫圖和解答下列問題:

(1)以A點為旋轉中心,將△ABC繞點A順時針旋轉90°得△AB1C1,畫出△AB1C1.

(2)作出△ABC關于坐標原點O成中心對稱的△A2B2C2.

(3)作出點C關于x軸的對稱點P. 若點P向右平移x個單位長度后落在△A2B2C2的內部(不含落在△A2B2C2的邊上),請直接寫出x的取值范圍.

(提醒:每個小正方形邊長為1個單位長度)

【答案】(1)作圖見解析;(2)作圖見解析;(3)5.5<x<8.

【解析】(1)利用網(wǎng)絡特點和旋轉的性質畫出點B、C的對應點B1、C1,則可得到△AB1C1;

(2)根據(jù)關于原點 的點的坐標特征寫出點A2、B2、C2的坐標,然后描點即可得到△A2B2C2;

(3)先利用關于x軸的對稱點的坐標特征寫出P點坐標,再描點得到P點,然后觀察圖形可判斷x的取值范圍.

⑴如圖△AB1C1為所作;

(2)如圖△A2B2C2為所作;

(3)5.5<x<8.

“點睛”本題考查了作圖-旋轉變換:根據(jù)旋轉的性質可知,對應角相等都等于旋轉角,對應線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應點,順次連接得出旋轉后的圖形,也考查另外平移變換.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2﹣3x+與x軸相交于A、B兩點,與y軸相交于點C,點D是直線BC下方拋物線上一點,過點D作y軸的平行線,與直線BC相交于點E

(1)求直線BC的解析式;

(2)當線段DE的長度最大時,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,將□ABCD置于直角坐標系中,其中BC邊在x軸上(BC的左側),點D坐標為(0,4),直線MNyx6沿著x軸的負方向以每秒1個單位的長度平移,設在平移過程中該直線被□ABCD截得的線段長度為m,平移時間為t(s),mt的函數(shù)圖像如圖②所示.

(1)填空:點C的坐標為 ;在平移過程中,該直線先經(jīng)過B、D中的哪一點? ;(填“B”或“D”)

(2)點B的坐標為 ,a .

3)求圖②中線段EF的函數(shù)關系式;

4t為何值時,該直線平分□ABCD的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水產(chǎn)店每天購進一種高檔海鮮500千克,預計每千克盈利10元,當天可全部售完,經(jīng)市場調查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.當天剩余的海鮮全部以每千克盈利5元的價格賣給某飯店,如果該水產(chǎn)店要保證當天盈利6500元,那么每千克應漲價多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育課上,老師測量跳遠成績的主要依據(jù)是( )

A. 垂線段最短 B. 兩點之間,線段最短

C. 平行線間的距離相等 D. 兩點確定一條直線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司研發(fā)1000件新產(chǎn)品,需要精加工后才能投放市場.現(xiàn)在甲、乙兩個工廠加工這批產(chǎn)品,已知甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天,而乙工廠每天加工的件數(shù)是甲工廠每天加工件數(shù)的1.25倍,公司需付甲工廠加工費用每天100元,乙工廠加工費用每天125元.

(1)甲、乙兩個工廠每天各能加工多少件新產(chǎn)品?

(2)兩個工廠同時合作完成這批產(chǎn)品,共付加工費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABO的頂點O在坐標原點,點B在x軸上,ABO=90°,AOB=30°,OB=2,反比例函數(shù)y=x>0的圖象經(jīng)過OA的中點C,交AB于點D.

1求反比例函數(shù)的關系式;

2連接CD,求四邊形CDBO的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個四棱錐的俯視圖是__________;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,以BC為直徑的圓交AC于點D,ABD=ACB.

1求證:AB是圓的切線;

2若點E是BC上一點,已知BE=4 ,tanAEB=,ABBC=23,求圓的直徑.

查看答案和解析>>

同步練習冊答案