△ABC中,a、b、c分別是∠A、∠B、∠C的對邊,如果a2+b2=c2,那么下列結論正確的是( 。
A、bcosB=c
B、csinA=a
C、atanA=b
D、tanB=
b
c
分析:由于a2+b2=c2,根據勾股定理的逆定理得到△ABC是直角三角形,且∠C=90°,再根據銳角三角函數(shù)的定義即可得到正確選項.
解答:解:∵a2+b2=c2
∴△ABC是直角三角形,且∠C=90°,
∴sinA=
a
c
,
即csinA=a,
∴B選項正確.
故選B.
點評:本題考查了銳角三角函數(shù)的定義和勾股定理的逆定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在△ABC中,DE∥BC,DE與AB相交于D,與AC相交于E,若AC=8,EC=3,DB=4,則AD=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,∠C=90°,若∠B=60°,b=30,則a+c=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,AC=2,AB=3,D是AC上一點,E是AB上一點,且∠ADE=∠B,設AD=x,AE=y,則y與x之間的函數(shù)關系式是( 。
A、y=
3
2
x(0<x<2)
B、y=
3
2
x(0<x≤2)
C、y=
2
3
x(0<x≤2)
D、y=
2
3
x(0<x<2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,在△ABC中,AB=8,AC=6,BC=7,點D在AC上,AD=2,
(1)過點D畫直線,使它截△ABC的兩邊所得的小三角形與△ABC相似(圖形備用,標出與∠B相等的角);
(2)若截線與AB交于E,求ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

7、在△ABC中,AB=3,BC=8,則AC的取值范圍是
5<AC<11

查看答案和解析>>

同步練習冊答案