分析 (1)根據(jù)等腰直角三角形的性質(zhì)解答即可;
(2)連接DE,由∠BAC=90°,AB=AC,可得∠B=45°,由DM垂直平分BE,可得BD=DE,進(jìn)而判斷△BDE是等腰直角三角形,所以ED⊥BD,然后由角平分線的性質(zhì)可得ED=AE,根據(jù)等量代換可得BD=AE;
(3)延長(zhǎng)BF,CA,交與點(diǎn)G,由CE平分∠ACB,可得∠ACE=∠BCE,由BF⊥CE,可得∠BFC=∠GFC=90°,然后由三角形內(nèi)角和定理可得:∠GBC=∠G,進(jìn)而可得BC=GC,然后由等腰三角形的三線合一,可得BF=FG=$\frac{1}{2}$BG,所以BG=2BF=2FG=4,然后再由ASA,可證△ACE≌△ABG,可得EC=BG=4,最后根據(jù)三角形的面積公式即可求△BEC的面積.
解答 解:(1)∵在△ABC中,∠BAC=90°,AB=AC,
∴∠B=45°,
故答案為:45;
(2)連接ED,如圖1,
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∵DM垂直平分BE,
∴BD=ED,
∴∠BED=∠B=45°,
∴∠EDC=∠B+∠BED=90°,
∵CE平分∠ACB,∠BAC=90°,∠EDC=90°,
∴ED=EA,
∴BD=AE;
(3)延長(zhǎng)BF和CA交于點(diǎn)G,如圖2,
∵CE平分∠ACB,
∴∠ACF=∠BCF,
∵BF⊥CE,
∴∠BFC=∠GFC=90°,
∴∠CBG=∠CGB,
∴CG=CB,
∴BF=GF=$\frac{1}{2}$BG,
∵∠GFC=∠GAB=90°,
∴∠ACF+∠G=90°,
∴∠ABG+∠G=90°,
∴∠ACF=∠ABG,
在△ACE和△ABG中
∠ACE=∠ABG
AC=AB
∠EAC=∠GAB
∴△ACE≌△ABG(ASA),
∴CE=BG,
∴CE=2BF,
∵CE=6,
∴BF=$\frac{1}{2}$CE=3,
$\begin{array}{l}{S_{△BEC}}=\frac{1}{2}CE•BF=\frac{1}{2}×6×3=9\end{array}$.
點(diǎn)評(píng) 該題主要考查了全等三角形的判定及其性質(zhì)的應(yīng)用問(wèn)題;準(zhǔn)確找出命題中隱含的等量關(guān)系,是證明全等三角形的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com