拋擲兩枚均勻的各面分別標有數(shù)字1,2,3,4的正四面體骰子,所得點數(shù)之和最大的概率是
 
分析:拋擲兩枚均勻的正四面體骰子總共有16種情況,求出點數(shù)之和最大有幾種情況,利用概率公式進行求解即可.
解答:解:所得點數(shù)之和最大的情況有:4,4.
故所得點數(shù)之和最大的概率是
1
16
點評:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=
m
n
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網精英家教網(一)如圖,放在直角坐標系中的正方形ABCD的邊長為4.現(xiàn)做如下實驗:
拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數(shù)分別是1至4這四個數(shù)字中的一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點的點數(shù)作為直角坐標系中P點的坐標(第一次的點數(shù)作橫坐標,第二次的點數(shù)作縱坐標).
(1)求P點落在正方形ABCD面上(含正方形內和邊界,下同)的概率;
(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為
34
?若存在,指出其中的一種平移方式;若不存在,請說明理由;
(二)若將(一)中所做實驗用的“正四面體骰子”改為“各面標有1至6這六個數(shù)字中的一個的正方體骰子”,其余(實驗步驟、作用)均不變.將正方形ABCD平移整數(shù)個單位,試求出點P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

(一)如圖,放在直角坐標系中的正方形ABCD的邊長為4.現(xiàn)做如下實驗:
拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數(shù)分別是1至4這四個數(shù)字中的一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點的點數(shù)作為直角坐標系中P點的坐標(第一次的點數(shù)作橫坐標,第二次的點數(shù)作縱坐標).
(1)求P點落在正方形ABCD面上(含正方形內和邊界,下同)的概率;
(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為數(shù)學公式?若存在,指出其中的一種平移方式;若不存在,請說明理由;
(二)若將(一)中所做實驗用的“正四面體骰子”改為“各面標有1至6這六個數(shù)字中的一個的正方體骰子”,其余(實驗步驟、作用)均不變.將正方形ABCD平移整數(shù)個單位,試求出點P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源:第25章《圖形的變換》中考題集(04):25.1 平移變換(解析版) 題型:解答題

(一)如圖,放在直角坐標系中的正方形ABCD的邊長為4.現(xiàn)做如下實驗:
拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數(shù)分別是1至4這四個數(shù)字中的一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點的點數(shù)作為直角坐標系中P點的坐標(第一次的點數(shù)作橫坐標,第二次的點數(shù)作縱坐標).
(1)求P點落在正方形ABCD面上(含正方形內和邊界,下同)的概率;
(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為?若存在,指出其中的一種平移方式;若不存在,請說明理由;
(二)若將(一)中所做實驗用的“正四面體骰子”改為“各面標有1至6這六個數(shù)字中的一個的正方體骰子”,其余(實驗步驟、作用)均不變.將正方形ABCD平移整數(shù)個單位,試求出點P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源:第33章《概率的計算和估計》中考題集(31):33.4 幾何概率(解析版) 題型:解答題

(一)如圖,放在直角坐標系中的正方形ABCD的邊長為4.現(xiàn)做如下實驗:
拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數(shù)分別是1至4這四個數(shù)字中的一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點的點數(shù)作為直角坐標系中P點的坐標(第一次的點數(shù)作橫坐標,第二次的點數(shù)作縱坐標).
(1)求P點落在正方形ABCD面上(含正方形內和邊界,下同)的概率;
(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為?若存在,指出其中的一種平移方式;若不存在,請說明理由;
(二)若將(一)中所做實驗用的“正四面體骰子”改為“各面標有1至6這六個數(shù)字中的一個的正方體骰子”,其余(實驗步驟、作用)均不變.將正方形ABCD平移整數(shù)個單位,試求出點P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源:第25章《概率初步》中考題集(23):25.2 用列舉法求概率(解析版) 題型:解答題

(一)如圖,放在直角坐標系中的正方形ABCD的邊長為4.現(xiàn)做如下實驗:
拋擲一枚均勻的正四面體骰子(它有四個頂點,各頂點的點數(shù)分別是1至4這四個數(shù)字中的一個),每個頂點朝上的機會是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點的點數(shù)作為直角坐標系中P點的坐標(第一次的點數(shù)作橫坐標,第二次的點數(shù)作縱坐標).
(1)求P點落在正方形ABCD面上(含正方形內和邊界,下同)的概率;
(2)將正方形ABCD平移整數(shù)個單位,則是否存在一種平移,使點P落在正方形ABCD面上的概率為?若存在,指出其中的一種平移方式;若不存在,請說明理由;
(二)若將(一)中所做實驗用的“正四面體骰子”改為“各面標有1至6這六個數(shù)字中的一個的正方體骰子”,其余(實驗步驟、作用)均不變.將正方形ABCD平移整數(shù)個單位,試求出點P落在正方形ABCD面上的概率.

查看答案和解析>>

同步練習冊答案