在正方形ABCD中,點M是射線BC上一點,點N是CD延長線上一點,且BM=DN.直線BD與MN相交于E.
(1)如圖1,當點M在BC上時,求證:BD-2DE=BM;
(2)如圖2,當點M在BC延長線上時,BD、DE、BM之間滿足的關系式是        ;
(3)在(2)的條件下,連接BN交AD于點F,連接MF交BD于點G.若DE=,且AF:FD=1:2時,求線段DG的長.
(1)證明見解析;(2)BD+2DE=BM;(3)

試題分析:(1)過點M作MF⊥BC交BD于點F,推出FM=DN,根據(jù)AAS證△EFM和△EDN全等,推出DE=EF,根據(jù)正方形的性質和勾股定理求出即可;
(2)過點M作MF⊥BC交BD于點F,推出FM=DN,根據(jù)AAS證△EFM和△EDN全等,推出DE=EF,根據(jù)正方形的性質和勾股定理求出即可;
(3)根據(jù)已知求出CM的長,證△ABF∽△DNF,得出比例式,代入后求出CD長,求出FM長即可.
試題解析:(1)過點M作MF⊥BC交BD于點F,
∵四邊形ABCD是正方形,
∴∠C=90°,
∴FM∥CD,
∴∠NDE=∠MFE,
∴FM=BM,
∵BM=DN,
∴FM=DN,
在△EFM和△EDN中,

∴△EFM≌△EDN,
∴EF=ED,
∴BD-2DE=BF,
根據(jù)勾股定理得:BF=BM,
即BD-2DE=BM.
(2)過點M作MF⊥BC交BD于點F,與(1)證法類似:BD+2DE=BF=BM,
(3)由(2)知,BD+2DE=BM,BD=BC,
∵DE=

∴CM=2,
∵AB∥CD,
∴△ABF∽△DNF,
∴AF:FD=AB:ND,
∵AF:FD=1:2,
∴AB:ND=1:2,
∴CD:ND=1:2,
CD:(CD+2)=1:2,
∴CD=2,∴FD=,
∴FD:BM=1:3,
∴DG:BG=1:3,
∴DG=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,BC是半⊙O的直徑,點P是半圓弧的中點,點A是弧BP的中點,AD⊥BC于D,連結AB、PB、AC,BP分別與AD、AC相交于點E、F.
(1)BE與EF相等嗎?并說明理由;
(2)小李通過操作發(fā)現(xiàn)CF=2AB,請問小李的發(fā)現(xiàn)是否正確,若正確,請說明理由;若不正確,請寫出CF與AB正確的關系式.
(3)求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在□ABCD中,AE、BF分別平分∠DAB和∠ABC,交CD于點E、F,AE、BF相交于點M.
(1)試說明:AE⊥BF;
(2)判斷線段DF與CE的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

操作:小明準備制作棱長為1cm的正方體紙盒,現(xiàn)選用一些廢棄的圓形紙片進行如下設計:
 
說明:方案一:圖形中的圓過點A、B、C;
方案二:直角三角形的兩直角邊與展開圖左下角的正方形邊重合,斜邊經過兩個正方形的頂點.
紙片利用率=×100%
發(fā)現(xiàn):(1)方案一中的點A、B恰好為該圓一直徑的兩個端點.
你認為小明的這個發(fā)現(xiàn)是否正確,請說明理由.
(2)小明通過計算,發(fā)現(xiàn)方案一中紙片的利用率僅約為38.2%.
請幫忙計算方案二的利用率,并寫出求解過程.
探究:
(3)小明感覺上面兩個方案的利用率均偏低,又進行了新的設計(方案三),請直接寫出方案三的利用率.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖正方形ABCD,E是BC的中點,F在AB上,且BF=,猜想EF與DE的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:r如圖,在梯形ABCD中,AD∥BC,∠BCD=90°.對角線AC、BD相交于點E。且AC⊥BD。(1)求證:CD²=BC·AD;(2)點F是邊BC上一點,連接AF,與BD相交于點G,如果∠BAF=∠DBF,求證:。

 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,△ABC中,A、B兩個頂點在x軸的上方,點C的坐標是(﹣1,0).以點C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C,并把△ABC的邊長放大到原來的2倍.設點B的對應點B′的橫坐標是a,則點B的橫坐標是( 。

A.        B.       C.       D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在平行四邊形ABCD中,CD=10,F(xiàn)是AB邊上一點,DF交AC于點E,且,則=________,BF=________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,以原點O為位似中心,將△ABO擴大到原來的2倍,得到△A′B′O.若點A的坐標是(1,2),則點A′的坐標是(  )
A.(2,4)B.(-1,-2)
C.(-2,-4)D.(-2,-1)

查看答案和解析>>

同步練習冊答案