如圖,在直角體系中,直線AB交x軸于點(diǎn)A(5,0),交y軸于點(diǎn)B,AO是⊙M的直徑,其半圓交AB于點(diǎn)C,且AC=3。取BO的中點(diǎn)D,連接CD、MD和OC。

(1)求證:CD是⊙M的切線;
(2)二次函數(shù)的圖象經(jīng)過點(diǎn)D、M、A,其對(duì)稱軸上有一動(dòng)點(diǎn)P,連接PD、PM,求△PDM的周長最小時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,當(dāng)△PDM的周長最小時(shí),拋物線上是否存在點(diǎn)Q,使?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由。

解:(1)證明:連接CM, 

∵OA 為⊙M直徑,∴∠OCA=90°!唷螼CB=90°。
∵D為OB中點(diǎn),∴DC=DO!唷螪CO=∠DOC。
∵M(jìn)O=MC,∴∠MCO=∠MOC。
。
又∵點(diǎn)C在⊙M上,∴DC是⊙M的切線。
(2)∵A點(diǎn)坐標(biāo)(5,0),AC=3
∴在Rt△ACO中,。
,∴,解得
又∵D為OB中點(diǎn),∴。∴D點(diǎn)坐標(biāo)為(0,)。
連接AD,設(shè)直線AD的解析式為y=kx+b,則有
解得。
∴直線AD為。
∵二次函數(shù)的圖象過M(,0)、A(5,0),
∴拋物線對(duì)稱軸x=。
∵點(diǎn)M、A關(guān)于直線x=對(duì)稱,設(shè)直線AD與直線x=交于點(diǎn)P,
∴PD+PM為最小。
又∵DM為定長,∴滿足條件的點(diǎn)P為直線AD與直線x=的交點(diǎn)。
當(dāng)x=時(shí),。
∴P點(diǎn)的坐標(biāo)為(,)。
(3)存在。
,
又由(2)知D(0,),P(,),
∴由,得,解得yQ。
∵二次函數(shù)的圖像過M(0,)、A(5,0),
∴設(shè)二次函數(shù)解析式為,
又∵該圖象過點(diǎn)D(0,),∴,解得a=。
∴二次函數(shù)解析式為。
又∵Q點(diǎn)在拋物線上,且yQ。
∴當(dāng)yQ=時(shí),,解得x=或x=;
當(dāng)yQ=時(shí),,解得x=。
∴點(diǎn)Q的坐標(biāo)為(),或(),或(,)。

解析試題分析:(1)連接CM,可以得出CM=OM,就有∠MOC=∠MCO,由OA為直徑,就有∠ACO=90°,D為OB的中點(diǎn),就有CD=OD,∠DOC=∠DCO,由∠DOC+∠MOC=90°就可以得出∠DCO+∠MCO=90°而得出結(jié)論。
(2)根據(jù)條件可以得出,從而求出OB的值,根據(jù)D是OB的中點(diǎn)就可以求出D的坐標(biāo),由待定系數(shù)法就可以求出拋物線的解析式,求出對(duì)稱軸,根據(jù)軸對(duì)稱的性質(zhì)連接AD交對(duì)稱軸于P,先求出AD的解析式就可以求出P的坐標(biāo)。
(3)根據(jù),求出Q的縱坐標(biāo),求出二次函數(shù)解析式即可求得橫坐標(biāo)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長分別為m、4m(m>0),D為邊AB的中點(diǎn),一拋物線l經(jīng)過點(diǎn)A、D及點(diǎn)M(﹣1,﹣1﹣m).

(1)求拋物線l的解析式(用含m的式子表示);
(2)把△OAD沿直線OD折疊后點(diǎn)A落在點(diǎn)A′處,連接OA′并延長與線段BC的延長線交于點(diǎn)E,若拋物線l與線段CE相交,求實(shí)數(shù)m的取值范圍;
(3)在滿足(2)的條件下,求出拋物線l頂點(diǎn)P到達(dá)最高位置時(shí)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,頂點(diǎn)為M的拋物線經(jīng)過點(diǎn)A和x軸正半軸上的點(diǎn)B,AO=OB=2,∠AOB=1200

(1)求這條拋物線的表達(dá)式;
(2)連接OM,求∠AOM的大;
(3)如果點(diǎn)C在x軸上,且△ABC與△AOM相似,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,對(duì)稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。

(1)求點(diǎn)B的坐標(biāo);
(2)已知,C為拋物線與y軸的交點(diǎn)。
①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長度的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)A的坐標(biāo)為(﹣1,0),對(duì)稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)點(diǎn)D是拋物線與y軸的交點(diǎn),點(diǎn)C是拋物線上的另一點(diǎn).已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點(diǎn)E的坐標(biāo);
(3)點(diǎn)P是(2)中拋物線對(duì)稱軸上一動(dòng)點(diǎn),且以1個(gè)單位/秒的速度從此拋物線的頂點(diǎn)E向上運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為     秒時(shí),△PAD的周長最小?當(dāng)t為     秒時(shí),△PAD是以AD為腰的等腰三角形?(結(jié)果保留根號(hào))
②點(diǎn)P在運(yùn)動(dòng)過程中,是否存在一點(diǎn)P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:一元二次方程
(1)求證:不論k為何實(shí)數(shù)時(shí),此方程總有兩個(gè)實(shí)數(shù)根;
(2)設(shè)k<0,當(dāng)二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)A、B間的距離為4時(shí),求此二次函數(shù)的解析式;
(3)在(2)的條件下,若拋物線的頂點(diǎn)為C,過y軸上一點(diǎn)M(0,m)作y軸的垂線l,當(dāng)m為何值時(shí),直線l與△ABC的外接圓有公共點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=﹣10x+500.
(1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤不低于300元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,某學(xué)校擬建一個(gè)含內(nèi)接矩形的菱形花壇(花壇為軸對(duì)稱圖形).矩形的四個(gè)頂點(diǎn)分別在菱形四條邊上,菱形ABCD的邊長AB=4米,∠ABC=60°.設(shè)AE=x米(0<x<4),矩形EFGH的面積為S米2

(1)求S與x的函數(shù)關(guān)系式;
(2)學(xué)校準(zhǔn)備在矩形內(nèi)種植紅色花草,四個(gè)三角形內(nèi)種植黃色花草.已知紅色花草的價(jià)格為20元/米2,黃色花草的價(jià)格為40元/米2.當(dāng)x為何值時(shí),購買花草所需的總費(fèi)用最低,并求出最低總費(fèi)用(結(jié)果保留根號(hào))?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于x的二次函數(shù)y=x2﹣2mx+m2+m的圖象與關(guān)于x的函數(shù)y=kx+1的圖象交于兩點(diǎn)A(x1,y1)、B(x2,y2);(x1<x2
(1)當(dāng)k=1,m=0,1時(shí),求AB的長;
(2)當(dāng)k=1,m為任何值時(shí),猜想AB的長是否不變?并證明你的猜想.
(3)當(dāng)m=0,無論k為何值時(shí),猜想△AOB的形狀.證明你的猜想.
(平面內(nèi)兩點(diǎn)間的距離公式).

查看答案和解析>>

同步練習(xí)冊答案