已知正方形ABCD的邊長為數(shù)學(xué)公式,過正方形的頂點A和對角線交點O作⊙O′,分別交AB、AD于F、E,⊙O′的半徑為數(shù)學(xué)公式
(1)求證:AE=BF.
(2)現(xiàn)給出以下兩個結(jié)論:①△AEF的面積不變;②數(shù)學(xué)公式的值不變.其中只有一個結(jié)論是正確的,請選擇正確的結(jié)論并求其值.

(1)證明:連接OE、OF,
由圓內(nèi)接四邊形性質(zhì)可知∠EAF+∠EOF=180°,且∠EAF=90°,
∴∠EOF=90°,
由正方形的性質(zhì)可知,∠AOB=90°,∠OAE=∠OBF=45°,OA=OB,
∴∠AOE=∠BOF,
∴△AOE≌△BOF,
∴AE=BF;

(2)解:△AEF的面積不變,正確.
理由:連接EF,
∵∠EAF=90°,∴直徑EF=,
由勾股定理,得AE2+AF2=3,
又AE+AF=AB=+1,
解得AE•AF=,
∴S△AEF=AE•AF=
分析:(1)連接OE、OF,利用旋轉(zhuǎn)及正方形的性質(zhì)可證△AOE≌△BOF,可得AE=BF;
(2)連接EF,由∠EAF=90°,可判斷EF為直徑,由勾股定理得AE2+AF2=3,由(1)的結(jié)論可知AE+AF=AB=+1,將AE+AF=+1兩邊平方,可得AE•AF=2,從而計算△AEF的面積.
點評:本題考查了用旋轉(zhuǎn)的性質(zhì)證明全等三角形的方法,正方形、圓的有關(guān)性質(zhì)及勾股定理的運用.關(guān)鍵是利用旋轉(zhuǎn)的知識尋找三角形全等的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊長為12cm,E為CD邊上一點,DE=5cm.以點A為中心,將△ADE按順時針方向旋轉(zhuǎn)得△ABF,則點E所經(jīng)過的路徑長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為6,以D為圓心,DA為半徑在正方形內(nèi)作弧AC,E是AB邊上動點(與點A、B不重精英家教網(wǎng)合),過點E作弧AC的切線,交BC于點F,G為切點,⊙O是△EBF的內(nèi)切圓,分別切EB、BF、FE于點P、J、H
(1)求證:△ADE∽△PEO;
(2)設(shè)AE=x,⊙O的半徑為y,求y關(guān)于x的解析式,并寫出定義域;
(3)當⊙O的半徑為1時,求CF的長;
(4)當點E在移動時,圖中哪些線段與線段EP始終保持相等,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•同安區(qū)質(zhì)檢)如圖,已知正方形ABCD的邊長是2,E是AB的中點,延長BC到點F使CF=AE.
(1)求證:△ADE≌△CDF;
(2)現(xiàn)把△DCF向左平移,使DC與AB重合,得△ABH,AH交ED于點G.求AG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•香洲區(qū)一模)如圖,已知正方形ABCD的邊長為28,動點P從A開始在線段AD上以每秒3個單位長度的速度向點D運動(點P到達點D時終止運動),動直線EF從AD開始以每秒1個單位長度的速度向下平行移動(即EF∥AD),并且分別與DC、AC交于E、F兩點,連接FP,設(shè)動點P與動直線EF同時出發(fā),運動時間為t 秒.
(1)t為何值時,梯形DPFE的面積最大?最大面積是多少?
(2)當梯形DPFE的面積等于△APF的面積時,求線段PF的長.
(3)△DPF能否為一個等腰三角形?若能,試求出所有的t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的邊長為8cm,點E、F分別在邊BC、CD上,∠EAF=45°.當EF=8cm時,△AEF的面積是
32
32
cm2;當EF=7cm時,△EFC的面積是
8
8
cm2

查看答案和解析>>

同步練習(xí)冊答案