已知如下圖,正方形ABCD中,E是CD邊上的一點,F(xiàn)為BC延長線上點,CE="CF."

(1)求證:△BEC≌△DFC;
(2)若∠BEC=60°,求∠EFD的度數(shù)
① △BEC≌△DFC; ②
(1)根據(jù)正方形的性質(zhì)及全等三角形的判定方法即可證明△BCE≌△DCF;
(2)由兩個三角形全等的性質(zhì)得出∠CFD的度數(shù),再用等腰三角形的性質(zhì)求∠EFD的度數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在□
ABCD中,點E、F分別在AB、CD上,F(xiàn)C=AE.四邊形DEBF是平行四邊形嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,四邊形ABCD是平行四邊形,△ADE和△BCF都是等邊三角形.求證:BD和EF互相平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AB∥DC,AD=BC,點E是CD延長線上一點,且AE∥BD.
(1)判斷四邊形ABDE是怎樣的四邊形,說明理由;
(2)△ACE是等腰三角形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將邊長為8的正方形紙片ABCD沿EF折疊如圖,則圖中①②③④四個三角形的周長之和為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°.
求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
∵正方形ABCD中,∠B=90°,∠AMN­=90°
∴∠1=180°-∠AMN­-∠AMB =180°-∠B-∠AMB=∠2
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當(dāng)∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD中,AC、BD相交于點O,∠AOB=60°,AB=2,則AC的長為(    ).

A.  2        B.4          C.       D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

工人師傅做鋁合金窗框分下面三個步驟進(jìn)行:
(1)先截出兩對符合規(guī)格的鋁合金窗料(如圖①),使AB=CD,EF=GH;
(2)擺放成如圖②的四邊形,則這時窗框的形狀是______形,根據(jù)的數(shù)學(xué)原理是:_______________________;
(3)將直角尺靠緊窗框的一個角(如圖③),調(diào)整窗框的邊框,當(dāng)直角尺的兩條直角邊與窗框無縫隙時(如圖④),說明窗框合格,這時窗框是_______形,根據(jù)的數(shù)學(xué)原理是:_____________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

矩形的兩條對角線的一個夾角是60°,兩條對角線長度的和是8cm,那么矩形的較短邊長是_     _cm

查看答案和解析>>

同步練習(xí)冊答案