【題目】如圖①,貨輪O在航行過程中,發(fā)現(xiàn)燈塔A在它南偏東60°的方向上,同時(shí),在它北偏東30°、西北(即北偏西45°)方向上又分別發(fā)現(xiàn)了客輪B和海島C

1)請(qǐng)分別在圖①中畫出表示客輪B和海島C方向的射線OB,OC(不寫作法);

2)若圖中有一艘漁船D,且∠AOD的補(bǔ)角是它的余角的3倍,在圖②中畫出表示漁船D方向的射線OD,并求漁船D在貨輪O的方位角.

【答案】(1)見解析;(2) DO南偏東15°或北偏東75°.

【解析】

(1)根據(jù)方向角的概念畫出圖形,表示出表示客輪B和海島C的射線即可;

(2)根據(jù)題意先求出∠AOD的度數(shù),然后根據(jù)∠AOD的度數(shù)畫出射線OD,然后再根據(jù)求出射線OD所表示的方向的度數(shù)即可.

(1)如圖①,射線OBOC就是所求作的;

(2)由∠AOD的補(bǔ)角是它的余角的3倍,

得180°﹣∠AOD=3(90°﹣∠AOD),

解得∠AOD=45°,

如圖②,射線OD1、OD2就是所求作的,

60°﹣45°=15°,

180°﹣60°﹣45°=75°,

DO南偏東15°或北偏東75°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.

(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點(diǎn)E,F(xiàn),求證:AE+AF=AD

(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點(diǎn)E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l分別與x軸、y軸交于A,B兩點(diǎn),與雙曲線y= (a≠0,x>0)分別交于D、E兩點(diǎn).

(1)若點(diǎn)D的坐標(biāo)為(4,1),點(diǎn)E的坐標(biāo)為(1,4):
①分別求出直線l與雙曲線的解析式;
②若將直線l向下平移m(m>0)個(gè)單位,當(dāng)m為何值時(shí),直線l與雙曲線有且只有一個(gè)交點(diǎn)?
(2)假設(shè)點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)D為線段AB的n等分點(diǎn),請(qǐng)直接寫出b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=a,AB=b,填空:當(dāng)點(diǎn)A位于   時(shí),線段AC的長取到最大值,則最大值為  ;(用含a、b的式子表示)。

(2)如圖2,若點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=4,AB=2,分別以AB,AC為邊,作等邊和等邊,連接CD,BE.

①圖中與線段BE相等的線段是線段 ,并說明理由;

②直接寫出線段BE長的最大值為

(3)如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PM=PB,∠BPM=90°,請(qǐng)直接寫出線段AM長的最大值為 ,及此時(shí)點(diǎn)P的坐標(biāo)為 (提示:等腰直角三角形的三邊長a、b、c滿足a:b:c=1:1:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)直角∠AOB,∠COD有相同的頂點(diǎn)O,下列結(jié)論:①∠AOC=∠BOD

∠AOC∠BOD=90°;③若OC平分∠AOB,則OB平分∠COD;④∠AOD的平分線與∠COB的平分線是同一條射線. 其中正確的個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=x2﹣1交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B,將此拋物線向右平移4個(gè)單位得拋物線y2 , 兩條拋物線相交于點(diǎn)C.

(1)請(qǐng)直接寫出拋物線y2的解析式;
(2)若點(diǎn)P是x軸上一動(dòng)點(diǎn),且滿足∠CPA=∠OBA,求出所有滿足條件的P點(diǎn)坐標(biāo);
(3)在第四象限內(nèi)拋物線y2上,是否存在點(diǎn)Q,使得△QOC中OC邊上的高h(yuǎn)有最大值?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo)及h的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是老師在嘉嘉的數(shù)學(xué)作業(yè)本上截取的部分內(nèi)容:

問題:(1)這種解方程組的方法叫什么方法;嘉嘉的解法正確嗎?如果不正確,從哪一步開始出錯(cuò)的?請(qǐng)你指出錯(cuò)誤的原因,并求出正確的解.

(2)請(qǐng)用不同于(1)中的方法解這個(gè)方程組.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的周長為20,其中AB=8,

(1)用直尺和圓規(guī)作 AB 的垂直平分線 DE 交 AC 于點(diǎn) E,垂足為 D,連接 EB;(保留作圖痕跡,不要求寫畫法)

(2)在(1)作出 AB 的垂直平分線 DE 后,求△CBE 的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果A、B、C三點(diǎn)在同一直線上,且線段AB=6 cmBC=4 cm,若MN分別為AB,BC的中點(diǎn),那么M,N兩點(diǎn)之間的距離為( )

A. 5 cm B. 1 cm C. 51 cm D. 無法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案