【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(2x+y﹣3,x﹣2y),它關(guān)于x軸的對(duì)稱(chēng)點(diǎn)A1的坐標(biāo)為(x+3,y﹣4),關(guān)于y軸的對(duì)稱(chēng)點(diǎn)為A2

(1)求A1、A2的坐標(biāo);

(2)證明:O為線(xiàn)段A1A2的中點(diǎn).

【答案】(1)A1(8,﹣3),A2(﹣8,3);(2)證明見(jiàn)解析.

【解析】

(1)根據(jù)“關(guān)于x軸對(duì)稱(chēng)的點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)”列方程組求出x、y的值,從而得到點(diǎn)A的坐標(biāo),再根據(jù)“關(guān)于x軸對(duì)稱(chēng)的點(diǎn),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)”寫(xiě)出點(diǎn)A1的坐標(biāo),根據(jù)“關(guān)于y軸對(duì)稱(chēng)的點(diǎn),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)”寫(xiě)出點(diǎn)A2的坐標(biāo);(2)設(shè)經(jīng)過(guò)的直線(xiàn)解析式為y=kx,利用待定系數(shù)法求一次函數(shù)解析式求出直線(xiàn)解析式,再求出點(diǎn)A2在直線(xiàn)上,然后利用勾股定理列式求出=,最后根據(jù)線(xiàn)段中點(diǎn)的定義證明即可.

(1)∵點(diǎn)A(2x+y﹣3,x﹣2y)與A1(x+3,y﹣4)關(guān)于x軸對(duì)稱(chēng),

解得,

所以,A(8,3),

所以,A1(8,﹣3),A2(﹣8,3);

(2)證明:設(shè)經(jīng)過(guò)OA1的直線(xiàn)解析式為y=kx,

易得:=﹣x,

又∵A2(﹣8,3),

∴A2在直線(xiàn)OA1上,

∴A1、O、A2在同一直線(xiàn)上,

由勾股定理知OA1=OA2==,

∴O為線(xiàn)段A1A2的中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a、b、c為三角形三個(gè)邊, +bxx-1)= -2b是關(guān)于x的一元二次方程嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上A、B兩點(diǎn)對(duì)應(yīng)的數(shù)為0、10,P為數(shù)軸上一點(diǎn)

(1)點(diǎn)PAB線(xiàn)段的中點(diǎn),點(diǎn)P對(duì)應(yīng)的數(shù)為   

(2)數(shù)軸上有點(diǎn)P,使PA,B的距離之和為20,點(diǎn)P對(duì)應(yīng)的數(shù)為   

(3)若點(diǎn)P點(diǎn)表示6,點(diǎn)M以每秒鐘5個(gè)單位的速度從A點(diǎn)向右運(yùn)動(dòng),點(diǎn)N以每秒鐘1個(gè)單位的速度從B點(diǎn)向右運(yùn)動(dòng),t秒后有PM=PN,求時(shí)間t的值(畫(huà)圖寫(xiě)過(guò)程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將ABC紙片沿DE折疊,使點(diǎn)A落在點(diǎn)A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+2的度數(shù)為(  )

A. 80°; B. 90°; C. 100°; D. 110°;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)九年級(jí)數(shù)學(xué)興趣小組想測(cè)量建筑物AB的高度.他們?cè)贑處仰望建筑物頂端,測(cè)得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測(cè)得仰角為64°,求建筑物的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=﹣3x﹣3與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A,C兩點(diǎn),且與x軸交于另一點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)).

(1)求拋物線(xiàn)的解析式及點(diǎn)B坐標(biāo);
(2)若點(diǎn)M是線(xiàn)段BC上一動(dòng)點(diǎn),過(guò)點(diǎn)M的直線(xiàn)EF平行y軸交x軸于點(diǎn)F,交拋物線(xiàn)于點(diǎn)E.求ME長(zhǎng)的最大值;
(3)試探究當(dāng)ME取最大值時(shí),在x軸下方拋物線(xiàn)上是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖ABC為等邊三角形,直線(xiàn)aAB,D為直線(xiàn)BC上一點(diǎn),∠ADE交直線(xiàn)a于點(diǎn)E,且∠ADE=60°.

(1)若DBC上(如圖1)求證CD+CE=CA;

(2)若DCB延長(zhǎng)線(xiàn)上,CD、CE、CA存在怎樣數(shù)量關(guān)系,給出你的結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A=3a2b2ab2+abc,小明同學(xué)錯(cuò)將“2A﹣B“看成”2A+B“,算得結(jié)果為4a2b3ab2+4abc

(1)計(jì)算B的表達(dá)式;

(2)求出2AB的結(jié)果;

(3)小強(qiáng)同學(xué)說(shuō)(2)中的結(jié)果的大小與c的取值無(wú)關(guān),對(duì)嗎?若a=,b=

(2)中式子的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某快遞公司的每位“快遞小哥”日收入與每日的派送量成一次函數(shù)關(guān)系,如圖所示.

1)求每位“快遞小哥”的日收入y(元)與日派送量x(件)之間的函數(shù)關(guān)系式;

2)已知某“快遞小哥”的日收入不少于110元,則他至少要派送多少件?

查看答案和解析>>

同步練習(xí)冊(cè)答案