【題目】如圖,將邊長為2cm的正方形ABCD沿其對(duì)角線AC剪開,再把△ABC沿著AD方向平移,得到△ABC′,若兩個(gè)三角形重疊部分的面積為1cm2 , 則它移動(dòng)的距離AA′等于(  )
A.0.5cm
B.1cm
C.1.5cm
D.2cm

【答案】B
【解析】解答:設(shè)ACAB′于H , ∵∠A=45°,∠D=90°
∴△AHA是等腰直角三角形
設(shè)AA′=x , 則陰影部分的底長為x , 高AD=2-x
x(2-x)=1
x=1
AA′=1cm.
故選:B.

分析:由平移的性質(zhì),結(jié)合陰影部分是平行四邊形,△AAH與△HCB′都是等腰直角三角形,則若設(shè)AA′=x , 則陰影部分的底長為x , 高AD=2-x , 根據(jù)平行四邊形的面積公式列出方程求解.解答此題的關(guān)鍵是抓住平移后圖形的特點(diǎn),利用方程方法解題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,對(duì)角線AC、BD相交于O,AD=1,BC=4,則△AOD與△BOC的面積比等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)系原點(diǎn),A(3,0),B(3,1),C(0,1),將△OAB沿直線OB折疊,使得點(diǎn)A落在點(diǎn)D處,ODBC交于點(diǎn)E,則OD所在直線的解析式為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,EAD延長線上一點(diǎn),BEAC于點(diǎn)F , 交DC于點(diǎn)G , 則下列結(jié)論中錯(cuò)誤的是( 。
A.△ABE∽△DGE
B.△CGB∽△DGE
C.△BCF∽△EAF
D.△ACD∽△GCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是直角三角形ABC斜邊上的中線,AEADCB延長線于E , 則圖中一定相似的三角形是( 。
A.△AED與△ACB
B.△AEB與△ACD
C.△BAE與△ACE
D.△AEC與△DAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把方程(x- )(x+ )+(2x-1)2=0化為一元二次方程的一般形式是( 。
A.
B.
C.
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動(dòng):購買原價(jià)超過200元的商品,超過200元的部分可以享受打折優(yōu)惠.若購買商品的實(shí)際付款金額y(單位:元)與商品原價(jià)x(單位:元)的函數(shù)關(guān)系的圖象如圖所示,則超過200元的部分可以享受的優(yōu)惠是(

A.打八折
B.打七折
C.打六折
D.打五折

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,3)和B(﹣3,m).
(1)求反比例函數(shù)y1= 和一次函數(shù)y2=ax+b的表達(dá)式;
(2)點(diǎn)C 是坐標(biāo)平面內(nèi)一點(diǎn),BC∥x 軸,AD⊥BC 交直線BC 于點(diǎn)D,連接AC.若AC= CD,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y1=mx2+(m﹣3)x﹣3(m>0)與x軸交于A、B兩點(diǎn),且點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,OB=OC.

(1)求這條拋物線的表達(dá)式;
(2)將拋物線y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,若點(diǎn)C在直線y2=﹣3x+t上,直線y2向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求n的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案