【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O交斜邊AC于點D,過圓心O作OE∥AC,交BC于點E,連接DE.
(1)判斷DE與⊙O的位置關系并說明理由;
(2)求證:2DE2=CDOE;
(3)若tanC=,DE=,求AD的長.
【答案】(1)DE是⊙O的切線,理由見解析;(2)證明見解析;(3)
【解析】(1)先判斷出DE=BE=CE,得出∠DBE=∠BDE,進而判斷出∠ODE=90°,即可得出結論;
(2)先判斷出△BCD∽△ACB,得出BC2=CDAC,再判斷出DE=BC,AC=2OE,即可得出結論;
(3)先求出BC,進而求出BD,CD,再借助(2)的結論求出AC,即可得出結論.
(1)DE是⊙O的切線,理由:如圖,
連接OD,BD,∵AB是⊙O的直徑,
∴∠ADB=∠BDC=90°,
∵OE∥AC,OA=OB,
∴BE=CE,
∴DE=BE=CE,
∴∠DBE=∠BDE,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODE=∠OBE=90°,
∵點D在⊙O上,
∴DE是⊙O的切線;
(2)∵∠BCD=∠ABC=90°,∠C=∠C,
∴△BCD∽△ACB,
∴,
∴BC2=CDAC,
由(1)知DE=BE=CE=BC,
∴4DE2=CDAC,
由(1)知,OE是△ABC是中位線,
∴AC=2OE,
∴4DE2=CD2OE,
∴2DE2=CDOE;
(3)∵DE=,
∴BC=5,
在Rt△BCD中,tanC=,
設CD=3x,BD=4x,根據(jù)勾股定理得,(3x)2+(4x)2=25,
∴x=-1(舍)或x=1,
∴BD=4,CD=3,
由(2)知,BC2=CDAC,
∴AC=,
∴AD=AC-CD=-3=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,點D在BA的延長線上,CD與⊙O交于另一點E,DE=OB=2,∠D=20°,則弧BC的長度為( 。
A. π B. π C. π D. π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一種市場均衡模型是用一次函數(shù)和二次函數(shù)來刻化的:根據(jù)市場調查,某種商品的市場需求量y1(噸)與單價x(百元)之間的關系可看作是二次函數(shù)y1=4﹣x2,該商品的市場供應量y2(噸)與單價x(百元)之間的關系可看作是一次函數(shù)y2=4x﹣1.
(1)當需求量等于供應量時,市場達到均衡.此時的單價x(百元)稱為均衡價格,需求量(供應量)稱為均衡數(shù)量.求所述市場均衡模型的均衡價格和均衡數(shù)量.
(2)當該商品單價為50元時,此時市場供應量與需求量相差多少噸?
(3)根據(jù)以上信息分析,當該商品①供不應求②供大于求時,該商品單價分別會在什么范圍內?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從城出發(fā)勻速行駛至城.在整個行駛過程中,甲、乙兩車離城的距離(千米)與甲車行駛的時間(小時)之間的函數(shù)關系如圖所示.則下列結論:
①兩城相距千米;
②乙車比甲車晚出發(fā)小時,卻早到小時;
③乙車出發(fā)后小時追上甲車;
④當甲、乙兩車相距千米時,
其中正確的結論有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知BC是⊙O的直徑,點D是BC延長線上一點,AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求證:直線AD是⊙O的切線;
(2)若AE⊥BC,垂足為M,⊙O的半徑為4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=18,BC=12,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中點,過D分別作DP⊥AF于P,DQ⊥CE于Q,則下列結論正確的個數(shù)是( 。
(1)CE平分∠BCD;(2)AF=CE;(3)連接DE、DF,則;(4)DP:DQ=
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃購進A,B兩種新型節(jié)能臺燈共100盞,這兩種臺燈的進價、售價如表所示:
類型 價格 | 進價(元/盞) | 售價(元/盞) |
A型 | 25 | 45 |
B型 | 40 | 70 |
(1)若商場進貨款為3100元,則這兩種臺燈各購進多少盞?
(2)若商場在3200元的限額內購進這兩種臺燈,且A型臺燈的進貨數(shù)量不超過B型臺燈數(shù)量的3倍,應怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:把一張給定大小的矩形卡片ABCD放在寬度為10mm的橫格紙中,恰好四個頂點都在橫格線上,已知α=25°,求長方形卡片的周長。(精確到1mm,參考數(shù)據(jù): sin25°≈0,cos25°≈0.9,tan25°≈0.5).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中考英語聽力測試期間T需要杜絕考點周圍的噪音.如圖,點A是某市一中考考點,在位于考點南偏西15°方向距離500米的C點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,消防車需沿北偏東75°方向的公路CF前往救援.已知消防車的警報聲傳播半徑為400米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?
說明理由.(≈1.732)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com