【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角坐標(biāo)系中,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸的正半軸上的點(diǎn)A'處,若AO=OB=2,則圖中陰影部分面積為_____.
【答案】.
【解析】
根據(jù)等腰三角形的性質(zhì)求出AB,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得BA′=AB,然后求出∠OA′B=30°,再根據(jù)直角三角形兩銳角互余求出∠A′BA=60°,即旋轉(zhuǎn)角為60°,再根據(jù)S陰影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′=S扇形ABA′﹣S扇形CBC′,然后利用扇形的面積公式列式計(jì)算即可得解.
解:∵∠ACB=90°,AC=BC,
∴△ABC是等腰直角三角形,
∴AB=2OA=2OB=4,BC=2,
∵△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)點(diǎn)A在A′處,
∴BA′=AB,
∴BA′=2OB,
∴∠OA′B=30°,
∴∠A′BA=60°,
即旋轉(zhuǎn)角為60°,
S陰影=S扇形ABA′+S△A′BC′﹣S△ABC﹣S扇形CBC′
=S扇形ABA′﹣S扇形CBC′
=
=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)如圖,菱形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,分別延長(zhǎng)OA,OC到點(diǎn)E,F,使AE=CF,依次連接B,F,D,E各點(diǎn).
(1)求證:△BAE≌△BCF;
(2)若∠ABC=50°,則當(dāng)∠EBA= °時(shí),四邊形BFDE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB=4,BC=6.若不改變矩形ABCD的形狀和大小,當(dāng)矩形頂點(diǎn)A在x軸的正半軸上左右移動(dòng)時(shí),矩形的另一個(gè)頂點(diǎn)D始終在y軸的正半軸上隨之上下移動(dòng).
(1)當(dāng)∠OAD=30°時(shí),求點(diǎn)C的坐標(biāo);
(2)設(shè)AD的中點(diǎn)為M,連接OM、MC,當(dāng)四邊形OMCD的面積為時(shí),求OA的長(zhǎng);
(3)當(dāng)點(diǎn)A移動(dòng)到某一位置時(shí),點(diǎn)C到點(diǎn)O的距離有最大值,請(qǐng)直接寫(xiě)出最大值,并求此時(shí)cos∠OAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)設(shè)了“3D”打印、數(shù)學(xué)史、詩(shī)歌欣賞、陶藝制作四門(mén)校本課程,為了解學(xué)生對(duì)這四門(mén)校本課程的喜愛(ài)情況,對(duì)學(xué)生進(jìn)行了隨機(jī)問(wèn)卷調(diào)查(問(wèn)卷調(diào)查表如圖所示),將調(diào)查結(jié)果整理后繪制了(圖1)、(圖2)兩幅均不完整的統(tǒng)計(jì)圖.
請(qǐng)您根據(jù)圖中提供的信息回答下列問(wèn)題:
(1)統(tǒng)計(jì)圖中的a= ,b= ;
(2)“D”對(duì)應(yīng)扇形的圓心角為 度;
(3)根據(jù)調(diào)查結(jié)果,請(qǐng)您估計(jì)該校1200名學(xué)生中最喜歡“數(shù)學(xué)史”校本課程的人數(shù);
(4)小明和小亮參加校本課程學(xué)習(xí),若每人從“A”、“B”、“C”三門(mén)校本課程中隨機(jī)選取一門(mén),請(qǐng)用畫(huà)樹(shù)狀圖或列表格的方法,求兩人恰好選中同一門(mén)校本課程的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊等腰直角三角板放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)坐標(biāo)為,點(diǎn)的坐標(biāo)為,一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)B、C,反比例函數(shù)的圖象也經(jīng)過(guò)點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的關(guān)系式;
(2)觀察圖象直接寫(xiě)出圖象在第二象限時(shí),的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我市“青山綠水”行動(dòng)中,某村計(jì)劃對(duì)面積為3640的山坡進(jìn)行綠化,經(jīng)投標(biāo)由甲,乙兩個(gè)工程隊(duì)來(lái)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天完能完成綠化的面積的2倍,如果兩隊(duì)各自獨(dú)立完成面積為400區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.
(1)求甲、乙兩工程隊(duì)每天各能完成多少面積的綠化;
(2)若甲隊(duì)每天綠化費(fèi)用是1.2萬(wàn)元,乙隊(duì)每天綠化費(fèi)用為0.5萬(wàn)元,該村要使這次綠化的總費(fèi)用不過(guò)40萬(wàn)元,則至少應(yīng)安排乙工程隊(duì)綠化多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是小莉在一次放風(fēng)箏活動(dòng)中某時(shí)段的示意圖,她在A處時(shí)的風(fēng)箏線(整個(gè)過(guò)程中風(fēng)箏線近似地看作直線)與水平線構(gòu)成37°角,線段AA1表示小紅身高1.5米.當(dāng)她從點(diǎn)A跑動(dòng)4米到達(dá)點(diǎn)B處時(shí),風(fēng)箏線與水平線構(gòu)成60°角,此時(shí)風(fēng)箏到達(dá)點(diǎn)E處,風(fēng)箏的水平移動(dòng)距離CF為8米,這一過(guò)程中風(fēng)箏線的長(zhǎng)度保持不變,求風(fēng)箏原來(lái)的高度C1D.
(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若兩條拋物線在x軸上經(jīng)過(guò)兩個(gè)相同點(diǎn),那么我們稱(chēng)這兩條拋物線是“同交點(diǎn)拋物線”,在x軸上經(jīng)過(guò)的兩個(gè)相同點(diǎn)稱(chēng)為“同交點(diǎn)”,已知拋物線y=x2+bx+c經(jīng)過(guò)(﹣2,0)、(﹣4,0),且一條與它是“同交點(diǎn)拋物線”的拋物線y=ax2+ex+f經(jīng)過(guò)點(diǎn)(﹣3,3).
(1)求b、c及a的值;
(2)已知拋物線y=﹣x2+2x+3與拋物線yn=x2﹣x﹣n(n為正整數(shù))
①拋物線y和拋物線yn是不是“同交點(diǎn)拋物線”?若是,請(qǐng)求出它們的“同交點(diǎn)”,并寫(xiě)出它們一條相同的圖像性質(zhì);若不是,請(qǐng)說(shuō)明理由.
②當(dāng)直線y=x+m與拋物線y、yn,相交共有4個(gè)交點(diǎn)時(shí),求m的取值范圍.
③若直線y=k(k<0)與拋物線y=﹣x2+2x+3與拋物線yn =x2﹣x﹣n (n為正整數(shù))共有4個(gè)交點(diǎn),從左至右依次標(biāo)記為點(diǎn)A、點(diǎn)B、點(diǎn)C、點(diǎn)D,當(dāng)AB=BC=CD時(shí),求出k、n之間的關(guān)系式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為8的正方形中,、分別是邊、上的動(dòng)點(diǎn),且,為中點(diǎn),是邊上的一個(gè)動(dòng)點(diǎn),則的最小值是( )
A.10B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com