【題目】如圖,正方形ABCD的邊長(zhǎng)為2,BE=CE,MN=1,線段MN的兩端點(diǎn)在CD、AD上滑動(dòng),當(dāng)DM為( )時(shí),△ABE與以D、M、N為頂點(diǎn)的三角形相似.
A.
B.
C. 或
D. 或
【答案】C
【解析】解:∵四邊形ABCD是正方形,
∴AB=BC,
∵BE=CE,
∴AB=2BE,
又∵△ABE與以D、M、N為頂點(diǎn)的三角形相似,
∴①DM與AB是對(duì)應(yīng)邊時(shí),DM=2DN
∴DM2+DN2=MN2=1
∴DM2+ DM2=1,
解得DM= ;
②DM與BE是對(duì)應(yīng)邊時(shí),DM= DN,
∴DM2+DN2=MN2=1,
即DM2+4DM2=1,
解得DM= .
∴DM為 或 時(shí),△ABE與以D、M、N為頂點(diǎn)的三角形相似.
故答案為:C.
根據(jù)正方形的性質(zhì),由四邊形ABCD是正方形,得到AB=BC,E為中點(diǎn),得到AB=2BE,又△ABE與以D、M、N為頂點(diǎn)的三角形相似,所以①DM與AB是對(duì)應(yīng)時(shí),DM=2DN,根據(jù)勾股定理得到DM2+DN2=MN2,DM2+ DM2,求出DM;②DM與BE是對(duì)應(yīng)邊時(shí),DM= DN,由勾股定理得到DM2+DN2=MN2,即DM2+4DM2,求出DM,得出結(jié)論△ABE與以D、M、N為頂點(diǎn)的三角形相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某翼裝飛行員從離水平地面高AC=500m的A處出發(fā),沿著俯角為15°的方向,直線滑行1600米到達(dá)D點(diǎn),然后打開(kāi)降落傘以75°的俯角降落到地面上的B點(diǎn).求他飛行的水平距離BC(結(jié)果精確到1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)-23×(1-)÷0.5;
(2)(--)÷-2;
(3)3(20-y)=6y-4(y-11);
(4)-1=-.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹(shù)BC的高度,他們?cè)谛逼律螪處測(cè)得大樹(shù)頂端B的仰角是30°,朝大樹(shù)方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹(shù)頂端B的仰角是48°,若坡角∠FAE=30°,求大樹(shù)的高度(結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中(AB≠BC),直線EF經(jīng)過(guò)其對(duì)角線的交點(diǎn)O,且分別交AD,BC于點(diǎn)M,N,交BA,DC的延長(zhǎng)線于點(diǎn)E,F,下列結(jié)論:①AO=BO;②OE=OF;③△EAM≌△FCN;④△EAO≌△DCO.其中一定正確的是()
A. ①② B. ②③
C. ①④ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人玩摸球游戲:一個(gè)不透明的袋子中裝有相同大小的3個(gè)球,球上分別標(biāo)有數(shù)字1,2,3.首先,甲從中隨機(jī)摸出一個(gè)球,然后,乙從剩下的球中隨機(jī)摸出一個(gè)球,比較球上的數(shù)字,較大的獲勝.
(1)求甲摸到標(biāo)有數(shù)字3的球的概率;
(2)這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過(guò)C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫(huà)圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為 1,在方格紙內(nèi)將△ABC經(jīng)過(guò)一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B 的對(duì)應(yīng)點(diǎn) B′.
(1)在給定方格紙中畫(huà)出平移后的△A′B′C′;
(2)線段 AA′與線段 BB′的數(shù)量和位置關(guān)系是___________;
(3)求△A′B′C′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分10分)在ABCD中,AC、BD交于點(diǎn)O,過(guò)點(diǎn)O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點(diǎn),連結(jié)EG、GF、FH、HE.
(1)如圖①,試判斷四邊形EGFH的形狀,并說(shuō)明理由;
(2)如圖②,當(dāng)EF⊥GH時(shí),四邊形EGFH的形狀是 ;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是 ;
(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com