(2007•臨夏州)某電視臺(tái)的娛樂(lè)節(jié)目有這樣的翻獎(jiǎng)游戲:正面為數(shù)字,背面寫有祝福語(yǔ)或獎(jiǎng)金數(shù),如下面的兩個(gè)表格.游戲的規(guī)則是:參加游戲的人可隨意翻動(dòng)一個(gè)數(shù)字牌,看背面對(duì)應(yīng)的內(nèi)容,就可以知道是得獎(jiǎng)還是得到祝福語(yǔ).
  牌的正面                                牌的反面
123祝你開(kāi)心萬(wàn)事如意獎(jiǎng)金1000元
456身體健康心想事成獎(jiǎng)金500元
789獎(jiǎng)金100元生活愉快謝謝參與
(1)求“翻到獎(jiǎng)金1000元”的概率;
(2)求“翻到獎(jiǎng)金”的概率.
【答案】分析:根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點(diǎn):
1、符合條件的情況數(shù)目;
2、全部情況的總數(shù);二者的比值就是其發(fā)生的概率的大。
解答:解:(1)根據(jù)題意可得:有參加游戲的人可隨意翻動(dòng)一個(gè)數(shù)字牌,共9種情況;其中有1個(gè)是“翻到獎(jiǎng)金1000元”;即“翻到獎(jiǎng)金1000元”的概率是;(3分)
(2)根據(jù)題意可得:有參加游戲的人可隨意翻動(dòng)一個(gè)數(shù)字牌,共9種情況;其中有3個(gè)是“翻到獎(jiǎng)金”;即“翻到獎(jiǎng)金”的概率是=.(6分)
點(diǎn)評(píng):本題考查概率的求法與運(yùn)用,一般方法為:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•臨夏州)3張撲克牌如圖(1)所示放在桌子上,小敏把其中一張旋轉(zhuǎn)180°后得到如圖(2)所示,則她所旋轉(zhuǎn)的牌從左數(shù)起是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•臨夏州)順次連結(jié)任意四邊形各邊中點(diǎn)所得到的四邊形一定是
平行四邊形
平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•臨夏州)[(1)-(3),10分]如圖,已知等邊△ABC和點(diǎn)P,設(shè)點(diǎn)P到△ABC三邊AB、AC、BC(或其延長(zhǎng)線)的距離分別為h1、h2、h3,△ABC的高為h.
在圖(1)中,點(diǎn)P是邊BC的中點(diǎn),此時(shí)h3=0,可得結(jié)論:h1+h2+h3=h.
在圖(2)--(5)中,點(diǎn)P分別在線段MC上、MC延長(zhǎng)線上、△ABC內(nèi)、△ABC外.
(1)請(qǐng)?zhí)骄浚簣D(2)--(5)中,h1、h2、h3、h之間的關(guān)系;(直接寫出結(jié)論)
(2)證明圖(2)所得結(jié)論;
(3)證明圖(4)所得結(jié)論.
(4)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點(diǎn)P在梯形內(nèi),且點(diǎn)P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關(guān)系為:
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
m(h1+h2+h3)-n(h1+h3-h4)=(m+n)h
;圖(4)與圖(6)中的等式有何關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2007•臨夏州)在平面幾何中,我們可以證明:周長(zhǎng)一定的多邊形中,正多邊形面積最大.使用上邊的事實(shí),解答下面的問(wèn)題:
用長(zhǎng)度分別為2、3、4、5、6(單位:cm)的五根木棒圍成一個(gè)三角形(允許連接,但不允許折斷),求能夠圍成的三角形的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2007•臨夏州)在直角坐標(biāo)系中,⊙A的半徑為4,圓心A的坐標(biāo)為(2,0),⊙A與x軸交于E、F兩點(diǎn),與y軸交于C、D兩點(diǎn),過(guò)點(diǎn)C作⊙A的切線BC,交x軸于點(diǎn)B.
(1)求直線CB的解析式;
(2)若拋物線y=ax2+bx+c的頂點(diǎn)在直線BC上,與x軸的交點(diǎn)恰為點(diǎn)E、F,求該拋物線的解析式;
(3)試判斷點(diǎn)C是否在拋物線上;
(4)在拋物線上是否存在三個(gè)點(diǎn),由它構(gòu)成的三角形與△AOC相似?直接寫出兩組這樣的點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案