【題目】如圖1,四邊形ABCD中,AD∥BC,∠ABC=∠DCB,AB=DC。
(1)求證:AC=DB;
(2)如圖2,E、F兩點同時從A、D出發(fā)在直線AD上以相同的速度反向而行,BF和CE會相等嗎?請證明你的結(jié)論。
【答案】(1)證明見解析(2)BF=CE
【解析】試題分析:
(1)由∠ABC=∠DCB,AB=DC結(jié)合BC=CB即可證得:△ABC≌△DCB,從而可得AC=DB;
(2)由題意可得AE=DF,從而可得AF=DE,由AD∥BC結(jié)合∠ABC=∠DCB,易得∠BAD=∠CDA,再結(jié)合AB=DC即可證得△BAF≌△CDE,從而可得BF=CE.
試題解析:
(1)在△ABC和△DCB中,
,
∴△ABC≌△DCB(SAS),
∴AC=DB;
(2)BF=CE,理由如下:
由題意可得:AE=DF,
∴AF=DE,
∵AD∥BC,
∴∠BAD+∠ABC=180°,∠CDA+∠DCB=180°,
∵∠ABC=∠DCB,
∴∠BAD=∠CDA,
在△BAF和△CDE中,
,
∴△BAF≌△CDE(SAS),
∴BF=CE.
科目:初中數(shù)學 來源: 題型:
【題目】已知關于的一元二次方程x2 +(2m+1)x+m2-4=0.
(1)若此方程有兩個不相等的實數(shù)根,求m的取值范圍.
(2)若方程的兩個根分別是平行四邊形的一組鄰邊的長,該平行四邊形為菱形,求這個四邊形的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解題:
定義:如果一個數(shù)的平方等于-1,記為i2=-1,這個數(shù)i叫做虛數(shù)單位.那么和我們所學的實數(shù)對應起來就叫做復數(shù),表示為a+bi(a,b為實數(shù)),a叫這個復數(shù)的實部,b叫做這個復數(shù)的虛部,它的加,減,乘法運算與整式的加,減,乘法運算類似.
例如計算:(5+i)×(3-4i)=19-17i.
(1)填空:i3= ,i4= .
(2)計算:(3+i)2;
(3)試一試:請利用以前學習的有關知識將化簡成a+bi的形式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“等對角四邊形”.
(1)已知:如圖1,四邊形是“等對角四邊形”, , , .求, 的度數(shù).
(2)在探究“等對角四邊形”性質(zhì)時:
① 小紅畫了一個“等對角四邊形”(如圖2),其中, ,此時她發(fā)現(xiàn)成立.請你證明此結(jié)論.
② 由此小紅猜想:“對于任意‘等對角四邊形’,當一組鄰邊相等時,另一組鄰邊也相等”.你認為她的猜想正確嗎?若正確,請證明;若不正確,請舉出反例.
(3)已知:在“等對角四邊形”中, , ,AB=AD=4,.求∠D和對角線的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點,以AE為折痕折疊紙片,使點B落在點F處,連接FC,當△EFC為直角三角形時,BE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,E、F分別是AD、BC的中點,G、H分別是BD、AC的中點,當AB、CD滿足什么條件時,四邊形EGFH是菱形?請證明你的結(jié)論.(提示:過點B作BM∥AD交EG的延長線于點M,證明EG//AB且EG=AB)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2004年4月我國鐵路第5次大提速。假設Kl20次空調(diào)快速列車的平均速度提速后比提速前提高了44千米/時,提速前的列車時刻表如下:
行駛區(qū)間 | 車次 | 起始時刻 | 到站時刻 | 歷時 | 全程里程 |
A地—B地 | K120 | 2:00 | 6:00 | 4小時 | 264千米 |
請你根據(jù)題目提供的信息,填寫提速后的列車時刻表,并寫出計算過程。
行駛區(qū)間 | 車次 | 起始時刻 | 到站時刻 | 歷時 | 全程里程 |
A地—B地 | K120 | 2:00 | 264千米 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(1,2),B(3,1),C(﹣2,﹣1).
(1)在圖中作出△ABC關于y軸對稱的△A1B1C1.
(2)寫出A1,B1,C1的坐標,A1 ;B1 ;C1 .(直接寫出答案)
(3)△A1B1C1的面積為 .(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com