點(diǎn)(-l,4)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是( )
A.(-1,-4)
B.(1,-4)
C.(1,4)
D.(4,-1)
【答案】分析:讓兩點(diǎn)的橫縱坐標(biāo)均互為相反數(shù)可得所求的坐標(biāo).
解答:解:∵兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,
∴橫坐標(biāo)為1,縱坐標(biāo)為-4.
故選B.
點(diǎn)評(píng):考查關(guān)于原點(diǎn)對(duì)稱的坐標(biāo)的特點(diǎn):兩點(diǎn)的橫坐標(biāo)互為相反數(shù);縱坐標(biāo)互為相反數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程x2-(q+p+1)x+p=0(q≥0)的兩個(gè)實(shí)數(shù)根為α、β,且α≤β.
(1)試用含有α、β的代數(shù)式表示p、q;
(2)求證:α≤1≤β;
(3)若以α、β為坐標(biāo)的點(diǎn)M(α、β)在△ABC的三條邊上運(yùn)動(dòng),且△ABC頂點(diǎn)的坐標(biāo)分別為A(1,2),B(
1
2
,1),C(1,1),問是否存在點(diǎn)M,使p+q=
5
4
?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、以關(guān)于x,y的方程x-y+2m=0①和x+y=4②的解為坐標(biāo)的點(diǎn)P(x,y)一定不在( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線y=ax2+bx+c經(jīng)過A(-1,0),B(3,0),C(0,3)三點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)M的坐標(biāo),并在給定的直角坐系中畫出這條拋物線;
(2)若點(diǎn)(x0,y0)在拋物線上,且1≤x0≤4,寫出y0的取值范圍;
(3)設(shè)平行于y軸的直線x=t交線段BM于點(diǎn)P(點(diǎn)P能與點(diǎn)M重合,不能與點(diǎn)B重合),交x軸于點(diǎn)Q,四邊形AQPC的面積為S
①求s關(guān)于t的函數(shù)關(guān)系式及自變量t的取值范圍;
②求S取得最大值時(shí)P的坐標(biāo);
③設(shè)四邊形OBMC的面積為S’,判斷是否存在點(diǎn)P,使得S=S’,若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如下面第一幅圖,點(diǎn)A的坐標(biāo)為(-1,1)
(1)那么點(diǎn)B,點(diǎn)C的坐標(biāo)分別為
 
;
(2)若一個(gè)關(guān)于x,y的二元一次方程,有兩個(gè)解是
x=點(diǎn)A的橫坐標(biāo)
y=點(diǎn)A的縱坐標(biāo)
x=點(diǎn)B的橫坐標(biāo)
y=點(diǎn)B的縱坐標(biāo)
請(qǐng)寫出這個(gè)二元一次方程,并檢驗(yàn)說(shuō)明點(diǎn)C的坐標(biāo)值是否是它的解.
(3)任。2)中方程的又一個(gè)解(不與前面的解雷同),將該解中x的值作為點(diǎn)D的橫坐標(biāo),y的值作為點(diǎn)D的縱坐標(biāo),在下面第一幅圖中描出點(diǎn)D;
(4)在下面第一幅圖中作直線AB與直線AC,則直線AB與直線AC的位置關(guān)系
 
,點(diǎn)D與直線AB的位置關(guān)系是
 

(5)若把直線AB叫做(2)中方程的圖象,類似地請(qǐng)?jiān)趥溆脠D上畫出二元一次方程組
x+y=4
x-y=-2
中兩個(gè)二元一次方程的圖象,并用一句話來(lái)概括你對(duì)二元一次方程組的解與它圖象之間的發(fā)現(xiàn).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實(shí)根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時(shí)方程的兩個(gè)根;
(3)若A、B是平面直角坐標(biāo)系中x軸上的兩個(gè)點(diǎn),點(diǎn)B在點(diǎn)A的左側(cè),且點(diǎn)A、B的橫坐l標(biāo)分別是(2)中方程的兩個(gè)根,以線段AB為直徑在x軸的上方作半圓P,設(shè)直線的解析l式為y=x+b,若直線與半圓P只有兩個(gè)交點(diǎn)時(shí),求出b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案