已知一條拋物線經(jīng)過A(0,3),B(4,6)兩點(diǎn),對稱軸是x=
53

(1)求這條拋物線的關(guān)系式;
(2)證明:這條拋物線與x軸的兩個交點(diǎn)中,必存在點(diǎn)C,使得對x軸上任意點(diǎn)D都有AC+BC≤AD+BD.
分析:(1)先設(shè)出函數(shù)的解析式:y=ax2+bx+c,根據(jù)拋物線經(jīng)過A(0,3),B(4,6)兩點(diǎn),用待定系數(shù)法求出函數(shù)的解析式;
(2)令y=0,得到方程,根據(jù)方程根與系數(shù)的關(guān)系求出拋物線與x軸的兩個交點(diǎn),再根據(jù)三角形任意兩邊之和大于第三邊,來證明.
解答:(1)解:設(shè)所求拋物線的關(guān)系式為y=ax2+bx+c,
∵A(0,3),B(4,6),對稱軸是直線x=
5
3
,
c=3
16a+4b+c=6
-
b
2a
=
5
3
,
解得
a=
9
8
b=-
15
4
c=3

∴y=
9
8
x2-
15
4
x+3


(2)證明:令y=0,得
9
8
x2-
15
4
x+3
=0,
x1=
4
3
x2=2
,
∵A(0,3),取A點(diǎn)關(guān)于x軸的對稱點(diǎn)E,
∴E(0,-3),
設(shè)直線BE的關(guān)系式為y=kx-3,把B(4,6)代入上式,得6=4k-3,
∴k=
9
4
,
∴y=
9
4
x-3,
9
4
x-3=0,
得x=
4
3

故C為(
4
3
,0)
,C點(diǎn)與拋物線在x軸上的一個交點(diǎn)重合,
在x軸上任取一點(diǎn)D,在△BED中,BE<BD+DE.
又∵BE=EC+BC,EC=AC,ED=AD,
∴AC+BC<AD+BD,
若D與C重合,則AC+BC=AD+BD,
∴AC+BC≤AD+BD.
點(diǎn)評:(1)第一問主要考查用待定系數(shù)法求出函數(shù)的解析式,還運(yùn)用了對稱軸公式;
(2)此題主要考查一元二次方程與函數(shù)的關(guān)系,函數(shù)與x軸的交點(diǎn)的橫坐標(biāo)就是方程的根,另外用到了三角形兩邊之和大于第三邊這一定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:《27.3 實(shí)踐與探索》2010年同步練習(xí)(B卷)(解析版) 題型:解答題

已知一條拋物線經(jīng)過A(0,3),B(4,6)兩點(diǎn),對稱軸是x=
(1)求這條拋物線的關(guān)系式;
(2)證明:這條拋物線與x軸的兩個交點(diǎn)中,必存在點(diǎn)C,使得對x軸上任意點(diǎn)D都有AC+BC≤AD+BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年河北省中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知一條拋物線經(jīng)過A(0,3),B(4,6)兩點(diǎn),對稱軸是x=
(1)求這條拋物線的關(guān)系式;
(2)證明:這條拋物線與x軸的兩個交點(diǎn)中,必存在點(diǎn)C,使得對x軸上任意點(diǎn)D都有AC+BC≤AD+BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年人教版初中數(shù)學(xué)九年級下26.2用函數(shù)觀點(diǎn)看一元二次方程練習(xí)卷(解析版) 題型:解答題

已知一條拋物線經(jīng)過A(0,3),B(4,6)兩點(diǎn),對稱軸是x=.

(1)求這條拋物線的關(guān)系式.

(2)證明:這條拋物線與x軸的兩個交點(diǎn)中,必存在點(diǎn)C,使得對x軸上任意點(diǎn)D都有AC+BC≤AD+BD.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河北 題型:解答題

已知一條拋物線經(jīng)過A(0,3),B(4,6)兩點(diǎn),對稱軸是x=
5
3

(1)求這條拋物線的關(guān)系式;
(2)證明:這條拋物線與x軸的兩個交點(diǎn)中,必存在點(diǎn)C,使得對x軸上任意點(diǎn)D都有AC+BC≤AD+BD.

查看答案和解析>>

同步練習(xí)冊答案