【題目】如圖,在 中, 與 的角平分線交于 點(diǎn).
(1)若 ,則 ;
(2)若 ,則 ;
(3)若 , 與 的角平分線交于 點(diǎn), 的平分線與 的平分線交于點(diǎn) , , 的平分線與 的平分線交于點(diǎn) ,則 .
【答案】
(1)110
(2)(90 + n)
(3)
【解析】(1)∵∠A=40°,
∴∠ABC+∠ACB=140°,
∵點(diǎn)O是∠ABC與∠ACB的角平分線的交點(diǎn),
∴∠OBC+∠OCB=70°,
∴∠BOC=110°。
故答案為:110°;
( 2 )∵∠A=n°,
∴∠ABC+∠ACB=180°-n°,
∵BO、CO分別是∠ABC與∠ACB的角平分線,
∴∠OBC+∠OCB= ∠ABC+ ∠ACB
= (∠ABC+∠ACB)
= (180°-n°)
=90°- n°,
∴∠BOC=180°-(∠OBC+∠OCB)=90°+ n°.
故答案為:90°+ n°
( 3 )由(2)得∠O=90°+ n°,
∵∠ABO的平分線與∠ACO的平分線交于點(diǎn)O1 ,
∴∠O1BC= ∠ABC,∠O1CB= ∠ACB,
∴∠O1=180°- (∠ABC+∠ACB)=180°- (180°-∠A)= ×180°+ n°,
同理,∠O2= ×180°+ n°,
∴∠On= ×180°+ °
∴∠O2017= °+ n°,
故答案為: °+ n°
(1)根據(jù)三角形內(nèi)角和定理和角平分線的性質(zhì),求出∠BOC的度數(shù);(2)當(dāng)∠A=n°時(shí),由三角形內(nèi)角和定理和角平分線的性質(zhì),得到∠BOC的代數(shù)式;(3)由(2)得∠O=90°+n°,依次求出∠O1、∠O2···的代數(shù)式,得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,由兩個(gè)長(zhǎng)為9,寬為3的全等矩形疊合而得到四邊形ABCD,則四邊形ABCD面積的最大值是( )
A.15
B.16
C.19
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:如圖1,圓的概念:在平面內(nèi),線段PA繞它固定的一個(gè)端點(diǎn)P旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A所形成的圖形叫做圓.就是說(shuō),到某個(gè)定點(diǎn)等于定長(zhǎng)的所有點(diǎn)在同一個(gè)圓上.圓心在P(a,b),半徑為r的圓的方程可以寫(xiě)為:(x-a)2+(y-b)2=r2.如:圓心在P(2,-1),半徑為5的圓的方程為:(x-2)2+(y+1)2=25.
(1)填空: ①以A(3,0)為圓心,1為半徑的圓的方程為:________; ②以B(-1,-2)為圓心, 為半徑的圓的方程為:________;
(2)根據(jù)以上材料解決以下問(wèn)題:
如圖2,以B(-6,0)為圓心的圓與y軸相切于原點(diǎn),C是☉B上一點(diǎn),連接OC,作BD⊥OC垂足為D,延長(zhǎng)BD交y軸于點(diǎn)E,已知sin∠AOC=.
①連接EC,證明EC是☉B的切線;
②在BE上是否存在一點(diǎn)P,使PB=PC=PE=PO,若存在,求P點(diǎn)坐標(biāo),并寫(xiě)出以P為圓心,以PB為半徑的☉P的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E、F、G、H分別是任意四邊形ABCD中AD、BD、BC、CA的中點(diǎn),當(dāng)四邊形ABCD的邊至少滿足條件時(shí),四邊形EFGH是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列 個(gè)命題:其中真命題是( ).
⑴三角形的外角和是 ;⑵三角形的三個(gè)內(nèi)角中至少有兩個(gè)銳角;⑶直角三角形兩銳角互余;⑷相等的角是對(duì)頂角.
A.( )( )
B.( )( )
C.( )( )
D.( )( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將長(zhǎng)方形紙片ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕EF分別與AB、DC交于點(diǎn)E和點(diǎn)F.
(1)證明:△ADF≌△AB′E;
(2)若AD=12,DC=18,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知坐標(biāo)平面內(nèi)的點(diǎn)A(-2,5),若將平面直角坐標(biāo)系先向右平移3個(gè)單位長(zhǎng)度,再向上平移4個(gè)單位長(zhǎng)度,則點(diǎn)A在平移后的坐標(biāo)系中的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD為菱形,點(diǎn)P為對(duì)角線BD上的一個(gè)動(dòng)點(diǎn).
(1)如圖1,連接AP并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)E,連接 PC,求證:∠AEB=∠PCD.
(2)如圖1,當(dāng)PA=PD且PC⊥BE時(shí),求∠ABC的度數(shù).
(3)連接AP并延長(zhǎng)交射線BC于點(diǎn)E,連接 PC,若∠ABC=90°且△PCE是等腰三角形,求∠PEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)題意解答
(1)探究:如圖①,在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于點(diǎn)E,若AE=8,求四邊形ABCD的面積.
(2)應(yīng)用:如圖②,在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于點(diǎn)E,若AE=20,BC=10,CD=6,則四邊形ABCD的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com