問題解決:
已知:如圖,D為AB上一動點,分別過點A、B作CA⊥AB于點A,EB⊥AB于點B,聯(lián)結(jié)CD、DE.
(1)請問:點D滿足什么條件時,CD+DE的值最。
(2)若AB=8,AC=4,BE=2,設(shè)AD=x.用含x的代數(shù)式表示CD+DE的長(直接寫出結(jié)果).
拓展應(yīng)用:
參考上述問題解決的方法,請構(gòu)造圖形,并求出代數(shù)式數(shù)學(xué)公式的最小值.

解:(1)當(dāng)點D、C、E三點在一條直線上時,CD+DE的值最小,
(2)
(3)如圖,令A(yù)B=4,AC=1,BE=2,設(shè)AD=x,則BD=4-x,
=,
∵D、C、E三點在一條直線上時,CD+DE的值最小,
∴CE的長即為的最小值,
過點E作AB的平行線交CA的延長線于點F,
∵CA⊥AB于A,EB⊥AB于B,
∴AF∥BE,
∴四邊形AFEB是矩形,
∴AF=BE=2,EF=AB=4,
在Rt△CFE中,∠F=90°,CF=3,
的最小值為5.
分析:(1)由兩點之間線段最短可知:當(dāng)點D、C、E三點在一條直線上時,CD+DE的值最;
(2)根據(jù)勾股定理計算即可;
(3)過點E作AB的平行線交CA的延長線于點F,再證明四邊形AFEB是矩形,根據(jù)矩形的性質(zhì)和勾股定理即可出代數(shù)式的最小值.
點評:本題考查了兩點之間線段最短的公理以及勾股定理的運用和矩形的判定及其性質(zhì),題目的綜合性較強,難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們知道三角形三條中線的交點叫做三角形的重心.經(jīng)過證明我們可得三角形重心具備下面的性質(zhì):重心到頂點的距離與重心到該頂點對邊中點的距離之比為2﹕1.請你用此性質(zhì)解決下面的問題.
已知:如圖,點O為等腰直角三角形ABC的重心,∠CAB=90°,直線m過點O,過A、B、C三點分別作直線m的垂線,垂足分別為點D、E、F.
(1)當(dāng)直線m與BC平行時(如圖1),請你猜想線段BE、CF和AD三者之間的數(shù)量關(guān)系并證明;
(2)當(dāng)直線m繞點O旋轉(zhuǎn)到與BC不平行時,分別探究在圖2、圖3這兩種情況下,上述結(jié)論是否還成立?若成立,請給予證明;若不成立,線段AD、BE、CF三者之間又有怎樣的數(shù)量關(guān)系?請寫出你的結(jié)論,不需證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•石景山區(qū)二模)閱讀下面材料:
小陽遇到這樣一個問題:如圖(1),O為等邊△ABC內(nèi)部一點,且OA:OB:OC=1:
2
3
,求∠AOB的度數(shù).

小陽是這樣思考的:圖(1)中有一個等邊三角形,若將圖形中一部分繞著等邊三角形的某個頂點旋轉(zhuǎn)60°,會得到新的等邊三角形,且能達到轉(zhuǎn)移線段的目的.他的作法是:如圖(2),把△ACO繞點A逆時針旋轉(zhuǎn)60°,使點C與點B重合,得到△ABO′,連接OO′.則△AOO′是等邊三角形,故OO′=OA,至此,通過旋轉(zhuǎn)將線段OA、OB、OC轉(zhuǎn)移到同一個三角形OO′B中.
(1)請你回答:∠AOB=
150
150
°.
(2)參考小陽思考問題的方法,解決下列問題:
已知:如圖(3),四邊形ABCD中,AB=AD,∠DAB=60°,∠DCB=30°,AC=5,CD=4.求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)問題解決:
已知:如圖,D為AB上一動點,分別過點A、B作CA⊥AB于點A,EB⊥AB于點B,聯(lián)結(jié)CD、DE.
(1)請問:點D滿足什么條件時,CD+DE的值最。
(2)若AB=8,AC=4,BE=2,設(shè)AD=x.用含x的代數(shù)式表示CD+DE的長(直接寫出結(jié)果).
拓展應(yīng)用:
參考上述問題解決的方法,請構(gòu)造圖形,并求出代數(shù)式
x2+1
+
(4-x)2+4
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,D是△ABC的邊BC上一點,AH⊥BC于H,S△ABD=
1
2
BD•AH,S△ADC=
1
2
DC•AH,則
S△ABD
S△ACD
=
BD
DC
,因此,利用三角形的面積比可以來表示兩條線段的比,甚至用三角形面積的比來證明與線段比有關(guān)的命題.

請解決下列問題:
已知:如圖2,直線l與△ABC的邊AB、AC交于D、F,與BC的延長線交于E,連接BF、AE.
(1)求證:
AD
DB
=
S△AEF
S△BEF
;
(2)求證:
AD
DB
BE
EC
CF
FA
=1.

查看答案和解析>>

同步練習(xí)冊答案