(2007•烏魯木齊)如圖,為了測(cè)量河流某一段的寬度,在河的北岸選了點(diǎn)A,在河的南岸選取了相距200m的B,C兩點(diǎn),分別測(cè)得∠ABC=60°,∠ACB=45°.
求這段河的寬度AD的長(zhǎng).(精確到0.1m)

【答案】分析:在解本題時(shí),必須構(gòu)建直角三角形,應(yīng)該把特殊角60°,45°放到所構(gòu)建的三角形中,利用三角函數(shù)解直角三角形即可.
解答:解:在Rt△ADB中,∠ABD=60°,tan∠ABD=,
∴BD=,
在Rt△ADC中,∠ACD=45°,
∴CD=AD,
又∵BC=200,
+AD=200,
解得AD≈126.8m.
答:河寬AD的長(zhǎng)為126.8m.
點(diǎn)評(píng):解本題關(guān)鍵是構(gòu)建直角三角形,利用三角函數(shù)來解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2007•烏魯木齊)已知開口向上的拋物線y=ax2-2x+|a|-4經(jīng)過點(diǎn)(0,-3).
(1)此拋物線的解析式為
y=x2-2x-3
y=x2-2x-3
;
(2)當(dāng)x=
1
1
時(shí),y有最小值,這個(gè)最小值是
-4
-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2007•烏魯木齊)已知開口向上的拋物線y=ax2-2x+|a|-4經(jīng)過點(diǎn)(0,-3).
(1)確定此拋物線的解析式;
(2)當(dāng)x取何值時(shí),y有最小值,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2007•烏魯木齊)如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(0,6),點(diǎn)B坐標(biāo)為,BC∥y軸且與x軸交于點(diǎn)C,直線OB與直線AC相交于點(diǎn)P.
(1)求點(diǎn)P的坐標(biāo);
(2)若以點(diǎn)O為圓心,OP的長(zhǎng)為半徑作⊙O(如圖2),求證:直線AC與⊙O相切于點(diǎn)P;
(3)過點(diǎn)B作BD∥x軸與y軸相交于點(diǎn)D,以點(diǎn)O為圓心,r為半徑作⊙O,使點(diǎn)D在⊙O內(nèi),點(diǎn)C在⊙O外;以點(diǎn)B為圓心,R為半徑作⊙B,若⊙O與⊙B相切,試分別求出r,R的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年新疆烏魯木齊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•烏魯木齊)已知開口向上的拋物線y=ax2-2x+|a|-4經(jīng)過點(diǎn)(0,-3).
(1)確定此拋物線的解析式;
(2)當(dāng)x取何值時(shí),y有最小值,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年新疆烏魯木齊市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•烏魯木齊)若反比例函數(shù)(k為常數(shù),k≠0)的圖象經(jīng)過點(diǎn)(3,-4),則下列各點(diǎn)在該函數(shù)圖象上的是( )
A.(6,-8)
B.(-6,8)
C.(-3,4)
D.(-3,-4)

查看答案和解析>>

同步練習(xí)冊(cè)答案