已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點C(0,4)與x軸交于點A、B,點B(4,0),拋物線的對稱軸為x=1.直線AD交拋物線于點D(2,m),
(1)求二次函數(shù)的解析式并寫出D點坐標(biāo);
(2)點Q是線段AB上的一動點,過點Q作QE∥AD交BD于E,連結(jié)DQ,當(dāng)△DQE的面積最大時,求點Q的坐標(biāo);
(3)拋物線與y軸交于點C,直線AD與y軸交于點F,點M為拋物線對稱軸上的動點,點N在x軸上,當(dāng)四邊形CMNF周長取最小值時,求出滿足條件的點M和點N的坐標(biāo).
(1)點D的坐標(biāo)為(2,4).
(2)當(dāng)t=1時,SDQE有最大值,所以此時Q點的坐標(biāo)為(1,0);
(3)滿足條件的點N的坐標(biāo)為N(,0),點M的坐標(biāo)為M(1,1).

試題分析:(1)根據(jù)點C(0,4),點B(4,0),拋物線的對稱軸為x=1可得關(guān)于a,b,c的方程組,解方程求得a,b,c的值,從而得到二次函數(shù)的解析式,再將點D(2,m)代入二次函數(shù)的解析式,得到關(guān)于m的方程,求得m的值,從而求解;
(2)先求得A,B點的坐標(biāo),過點E作EG⊥QB,根據(jù)相似三角形的判定和性質(zhì)可得EG= ,由于SDQE=SBDQ-SBEQ,配方后即可得到SDQE有最大值時Q點的坐標(biāo);
(3)根據(jù)待定系數(shù)法得到直線AD的解析式為:y=x+2,過點F作關(guān)于x軸的對稱點F′,即F′(0,-2),再連接DF′交對稱軸于M′,x軸于N′,由條件可知,點C,D是關(guān)于對稱軸x=1對稱,則CF+F′N+M′N′+M′C=CF+DF′=2+2,得到四邊形CFNM的最短周長為:2+2時直線DF′的解析式為:y=3x-2,長而得到滿足條件的點M和點N的坐標(biāo).
(1)由題意有:,
解得:
所以,二次函數(shù)的解析式為:y=-x2+x+4,
∵點D(2,m)在拋物線上,即m=-×22+2+4=4,
所以點D的坐標(biāo)為(2,4).
(2)令y=0,即-x2+x+4=0,解得:x1=4,x2=-2,
∴A,B點的坐標(biāo)分別是(-2,0),(4,0),
如圖1,過點E作EG⊥QB,垂足為G,設(shè)Q點坐標(biāo)為(t,0),
∵QE∥AD,
∴△BEQ與△BDA相似,
 ,即,
∴EG=,
∴SBEQ=×(4-t)×,
∴SDQE=SBDQ-SBEQ
=×(4-t)×4-SBEQ
=2(4-t)-(4-t)2
=-t2+t+
=-(t-1)2+3,
∴當(dāng)t=1時,SDQE有最大值,所以此時Q點的坐標(biāo)為(1,0);

(3)由A(-2,0),D(2,4),可求得直線AD的解析式為:y=x+2,即點F的坐標(biāo)為:F(0,2),
如圖2,過點F作關(guān)于x軸的對稱點F′,即F′(0,-2),再連接DF′交對稱軸于M′,x軸于N′,由條件可知,點C,D是關(guān)于對稱軸x=1對稱,
則CF+F′N+M′N′+M′C=CF+DF′=2+2,
則四邊形CFNM的周長=CF+FN+NM+MC≥CF+FN′+M′N′+M′C,
即四邊形CFNM的最短周長為:2+2
此時直線DF′的解析式為:y=3x-2,
所以存在點N的坐標(biāo)為N(,0),點M的坐標(biāo)為M(1,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某種上屏每天的銷售利潤y(元)與銷售單價x(元)之間滿足關(guān)系:y=ax2+bx-75.其圖像如圖所示.
銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?
銷售單價在什么范圍時,該種商品每天的銷售利潤不低于16元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A(5,0)、B(-1,0)兩點,過點A作直線AC⊥x軸,交直線于點C;
(1)求該拋物線的解析式;
(2)求點A關(guān)于直線的對稱點的坐標(biāo),判定點是否在拋物線上,并說明理由;
(3)點P是拋物線上一動點,過點P作y軸的平行線,交線段于點M,是否存在這樣的點P,使四邊形PACM是平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一個二次函數(shù)的關(guān)系式為 y=x2-2bx+c.
(1)若該二次函數(shù)的圖象與x軸只有一個交點,
①則b、c 應(yīng)滿足關(guān)系為                ;
②若該二次函數(shù)的圖象經(jīng)過A(m,n)、B(m +6,n)兩點,求n的值;
(2)若該二次函數(shù)的圖象與x軸有兩個交點C(6,0)、D(k,0),線段CD(含端點)上有若干個橫坐標(biāo)為整數(shù)的點,且這些點的橫坐標(biāo)之和為21,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,在□ABCD中,對角線AC⊥AB,BC=10,tan∠B=2.點E是BC邊上的動點,過點E作EF⊥BC于點E,交折線AB-AD于點F,以EF為邊在其右側(cè)作正方形EFGH,使EH邊落在射線BC上.點E從點B出發(fā),以每秒1個單位的速度在BC邊上運動,當(dāng)點E與點C重合時,點E停止運動,設(shè)點E的運動時間為t()秒.
(1)□ABCD的面積為          ;當(dāng)t=      秒時,點F與點A重合;
(2)點E在運動過程中,連接正方形EFGH的對角線EG,得△EHG,設(shè)△EHG與△ABC的重疊部分面積為S,請直接寫出S與t的函數(shù)關(guān)系式以及對應(yīng)的自變量t的取值范圍;
(3)作點B關(guān)于點A的對稱點Bˊ,連接CBˊ交AD邊于點M(如圖②),當(dāng)點F在AD邊上時,EF與對角線AC交于點N,連接MN得△MNC.是否存在時間t,使△MNC為等腰三角形?若存在,請求出使△MNC為等腰三角形的時間t;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,把邊長分別是為4和2的兩個正方形紙片OABC和OD′E′F′疊放在一起.
(1)操作1:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉(zhuǎn)45°得到正方形ODEF,如圖2,連接AD、CF,線段AD與CF之間有怎樣的數(shù)量關(guān)系?試證明你的結(jié)論;
(2)操作2,如圖2,將正方形ODEF沿著射線DB以每秒1個單位的速度平移,平移后的正方形ODEF設(shè)為正方形PQMN,如圖3,設(shè)正方形PQMN移動的時間為x秒,正方形PQMN與正方形OABC的重疊部分面積為y,直接寫出y與x之間的函數(shù)解析式;
(3)操作3:固定正方形OABC,將正方形OD′E′F′繞點O按順時針方向旋轉(zhuǎn)90°得到正方形OHKL,如圖4,求△ACK的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm。
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動。當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移。DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5)。解答下列問題:
(1)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最小?若存在,求出y的最小值;若不存在,說明理由。
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由。(圖(3)供同學(xué)們做題使用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與軸相交于點,頂點為,點在這個二次函數(shù)圖象的對稱軸上.若四邊形是一個邊長為2且有一個內(nèi)角為的菱形.求此二次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

方程的正數(shù)根的個數(shù)為(  )
A.1個B.2個C.3D.0

查看答案和解析>>

同步練習(xí)冊答案