已知:如圖,△ABC是⊙O的內(nèi)接正三角形,弦EF經(jīng)過(guò)BC的中點(diǎn)D,且EF∥AB,若AB=2,則DE的長(zhǎng)是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    1
B
分析:設(shè)AC與EF交于點(diǎn)G,由于EF∥AB,且D是BC中點(diǎn),易得DG是△ABC的中位線,即DG=1;
易知△CDG是等腰三角形,可過(guò)C作AB的垂線,交EF于M,交AB于N;然后證DE=FG,根據(jù)相交弦定理得BD•DC=DE•DF,而B(niǎo)D、DC的長(zhǎng)易知,DF=1+DE,由此可得到關(guān)于DE的方程,即可求得DE的長(zhǎng).
解答:解:如圖.過(guò)C作CN⊥AB于N,交EF于M,則CM⊥EF.
根據(jù)圓和等邊三角形的性質(zhì)知:CN必過(guò)點(diǎn)O.
∵EF∥AB,D是BC的中點(diǎn),
∴DG是△ABC的中位線,即DG=AB=1;
易知△CGD是等邊三角形,而CM⊥DG,則DM=MG;
由于OM⊥EF,由垂徑定理得:EM=MF,故DE=GF.
∵弦BC、EF相交于點(diǎn)D,
∴BD•DC=DE•DF,即DE×(DE+1)=1;
解得DE=(負(fù)值舍去).
故選B.
點(diǎn)評(píng):此題主要考查了等邊三角形的性質(zhì)、垂徑定理、三角形中位線定理、相交弦定理等知識(shí),能夠證得DE、GF的數(shù)量關(guān)系是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BE平分∠ABC,交AD于點(diǎn)M,AN平分∠DAC,交BC于點(diǎn)N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點(diǎn)F,過(guò)F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC是等邊三角形,點(diǎn)D在AB上,點(diǎn)E在AC的延長(zhǎng)線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點(diǎn)D在BC上,DA⊥CA于A.
求:BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點(diǎn)E在AC的垂直平分線上.
(1)請(qǐng)問(wèn):AB、BD、DC有何數(shù)量關(guān)系?并說(shuō)明理由.
(2)如果∠B=60°,請(qǐng)問(wèn)BD和DC有何數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案