A. | △CAE∽△BDA | B. | $\frac{AD}{AE}=\frac{AC}{BD}$ | C. | BD•CE=4 | D. | BE=$\sqrt{2}$BF |
分析 根據(jù)等腰直角三角形的性質(zhì)得到∠B=∠C=45°,推出△CAE∽△BDA,由相似三角形的性質(zhì)得到$\frac{AC}{BD}=\frac{CE}{AB}=\frac{AD}{AE}$,證得BD•CE=4,由EF⊥AB,得到△BEF是等腰直角三角形,于是得到BE=$\sqrt{2}$BF,即可得到結(jié)論.
解答 解:∵∠BAC=90°,AB=AC,
∴∠B=∠C=45°,
∵∠AED=∠BAD,
∴△CAE∽△BDA,
∴AC:BD=CE:AB=AE:AD,
∵AB=AC=2,
∴BD•CE=4,
∵EF⊥AB,
∴△BEF是等腰直角三角形,
∴BE=$\sqrt{2}$BF,
∴A、C、D正確,
故選B.
點(diǎn)評(píng) 本題考查了相似三角形的判定和性質(zhì),正方形的性質(zhì),等腰直角三角形的性質(zhì),正確的識(shí)圖是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2x2-39x+180=0 | B. | 2x2+39x+180=0 | C. | 2x2-39x-180=0 | D. | 2x2+39x-180=0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com