分式方程
x
x+2
=
x-1
x
的解為x=
 
考點(diǎn):解分式方程
專題:計(jì)算題
分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.
解答:解:去分母得:x2=x2-x+2x-2,
解得:x=2,
經(jīng)檢驗(yàn)x=2是分式方程的解.
故答案為:2
點(diǎn)評(píng):此題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗(yàn)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

實(shí)驗(yàn)與探究:
三角點(diǎn)陣前n行的點(diǎn)數(shù)計(jì)算
如圖是一個(gè)三角點(diǎn)陣,從上向下數(shù)有無(wú)數(shù)多行,其中第一行有1個(gè)點(diǎn),第二行有2個(gè)點(diǎn)…第n行有n個(gè)點(diǎn)…
容易發(fā)現(xiàn),10是三角點(diǎn)陣中前4行的點(diǎn)數(shù)的和,你能發(fā)現(xiàn)300是前多少行的點(diǎn)數(shù)的和嗎?
如果要用試驗(yàn)的方法,由上而下地逐行的相加其點(diǎn)數(shù),雖然你能發(fā)現(xiàn)1+2+3+4+…+23+24=300.得知300是前24行的點(diǎn)數(shù)的和,但是這樣尋找答案需我們先探求三角點(diǎn)陣中前n行的點(diǎn)數(shù)的和與n的數(shù)量關(guān)系
前n行的點(diǎn)數(shù)的和是1+2+3+…+(n-2)+(n-1)+n,可以發(fā)現(xiàn).
2×[1+2+3+…+(n-2)+(n-1)+n]
=[1+2+3+…+(n-2)+(n-1)+n]+[n+(n-1)+(n-2)+…3+2+1]
把兩個(gè)中括號(hào)中的第一項(xiàng)相加,第二項(xiàng)相加…第n項(xiàng)相加,上式等號(hào)的后邊變形為這n個(gè)小括號(hào)都等于n+1,整個(gè)式子等于n(n+1),于是得到
1+2+3+…+(n-2)+(n-1)+n=
1
2
n(n+1)
這就是說(shuō),三角點(diǎn)陣中前n項(xiàng)的點(diǎn)數(shù)的和是
1
2
n(n+1)
下列用一元二次方程解決上述問題
設(shè)三角點(diǎn)陣中前n行的點(diǎn)數(shù)的和為300,則有
1
2
n(n+1)=300
整理這個(gè)方程,得:n2+n-600=0
解方程得:n1=24,n2=-25
根據(jù)問題中未知數(shù)的意義確定n=24,即三角點(diǎn)陣中前24行的點(diǎn)數(shù)的和是300.
請(qǐng)你根據(jù)上述材料回答下列問題:
(1)三角點(diǎn)陣中前n行的點(diǎn)數(shù)的和能是600嗎?如果能,求出n;如果不能,試用一元二次方程說(shuō)明道理.
(2)如果把圖中的三角點(diǎn)陣中各行的點(diǎn)數(shù)依次換成2、4、6、…、2n、…,你能探究出前n行的點(diǎn)數(shù)的和滿足什么規(guī)律嗎?這個(gè)三角點(diǎn)陣中前n行的點(diǎn)數(shù)的和能是600嗎?如果能,求出n;如果不能,試用一元二次方程說(shuō)明道理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=-x2-2x+3 的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求A、B、C的坐標(biāo);
(2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG=2
2
DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

己知實(shí)數(shù)a、b滿足a+b=5,ab=3,則a-b=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)三角形紙板,三邊長(zhǎng)分別為10cm,10cm,12cm,在這個(gè)紙板上剪出一個(gè)面積最大的正方形,則此正方形的邊長(zhǎng)為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人進(jìn)行射擊測(cè)試,每人10次射擊成績(jī)的平均數(shù)都是8.5環(huán),方差分別是:S2=2,S2=1.5,則射擊成績(jī)較穩(wěn)定的是
 
(填“甲”或“乙“).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,半徑為6cm的⊙O中,C、D為直徑AB的三等分點(diǎn),點(diǎn)E、F分別在AB兩側(cè)的半圓上,∠BCE=∠BDF=60°,連接AE、BF,則圖中兩個(gè)陰影部分的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知如圖:△ABC、△DCE均為等腰直角三角形,其中AC=BC,DC=DE,∠ACB=∠D=90°,將△DCE繞點(diǎn)C旋轉(zhuǎn),兩邊分別交AB于M、N.若AM=3,BN=4,則△CMN的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

為了解“數(shù)學(xué)思想作為對(duì)學(xué)習(xí)數(shù)學(xué)幫助有多大?”一研究員隨機(jī)抽取了一定數(shù)量的高校大一學(xué)生進(jìn)行了問卷調(diào)查,并將調(diào)查得到的數(shù)據(jù)用下面的扇形圖和下表來(lái)表示(圖、表都沒制作完成).
選項(xiàng)幫助很大幫助較大幫助不大幾乎沒有幫助
人數(shù)a543269b
根據(jù)圖、表提供的信息.
(1)請(qǐng)問:這次共有多少名學(xué)生參與了問卷調(diào)查?
(2)算出表中a、b的值.
(注:計(jì)算中涉及到的“人數(shù)”均精確到1)

查看答案和解析>>

同步練習(xí)冊(cè)答案