【題目】如圖所示,AB=6,AC=3,∠BAC=60°,為⊙O上的一段弧,且∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為__________
【答案】
【解析】
連接AP、O、OA,分別以AB、AC所在直線為對稱軸,作出P關(guān)于AB的對稱點M,P關(guān)于AC的對稱點N,連接MN,交AB于點E,交AC于點F,連接PE、PF,所以
AM=AP=AN,設(shè)AP=r,則MN=,所以PE+EF+PF=ME+EF+FN=MN=,即當(dāng)AP最小時,PE+EF+PF可取最小值,由AP+OP≥OA可知AP≥OA﹣OP,即點P在OA上時,AP可取得最小值,利用勾股定理即可求得AP的長度,即可解答.
連接BC,取AB的中點D,連接CD,如圖1
則AD=BD=3
∴AD=BD=AC
∵∠BOC=60°
∴△ADC是等邊三角形
∴CD=AC=3
∴CD=AB
∴∠ACB=90°
連接AP、O、OA,分別以AB、AC所在直線為對稱軸,作出P關(guān)于AB的對稱點M,P關(guān)于AC的對稱點N,連接MN,交AB于點E,交AC于點F,連接PE、PF,
∴AM=AP=AN
∵∠MAB=∠PAB,∠NAC=∠PAC
∵∠BAC=∠PAB+∠PAC=∠MAB+∠NAC=60°
∴∠MAN=120°
∴M、P、N在以A為圓心AP為半徑的圓上
設(shè)AP=r,則MN=
∵PE=ME,PF=FN
∴PE+EF+PF=ME+EF+FN=MN=
∴當(dāng)AP最小時,PE+EF+PF可取最小值
∵AP+OP≥OA
∴AP≥OA﹣OP,即點P在OA上時,AP可取得最小值
在Rt△ABC中,∵AB=6,AC=3,∠BAC=60°
∴BC=
∵∠BOC=60°,OB=OC
∴△OBC是等邊三角形
∴OC=BC=,作OH⊥AC交AC的延長線于H
在Rt△OCH中,∵OC=,∠OCH=30°
∴OH=OC=,CH=OH=
在Rt△AOH中,AO=
此時AP=r=
∴PE+EF+PF的最小值為
故答案為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請你利用直角坐標(biāo)平面上任意兩點(x1,y1)、(x2,y2)間的距離公式解答下列問題:
已知:反比例函數(shù)與正比例函數(shù)y=x的圖象交于A、B兩點(A在第一象限),點F1(﹣2,﹣2)、F2(2,2)在直線y=x上.設(shè)點P(x0,y0)是反比例函數(shù)圖象上的任意一點,記點P與F1、F2兩點的距離之差d=|PF1﹣PF2|.試比較線段AB的長度與d的大小,并由此歸納出雙曲線的一個重要定義(用簡練的語言表述).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(發(fā)現(xiàn))x4﹣5x2+4=0是一個一元四次方程.
(探索)根據(jù)該方程的特點,通常用“換元法”解方程:
設(shè)x2=y,那么x4= ,于是原方程可變?yōu)?/span> .
解得:y1=1,y2= .
當(dāng)y=1時,x2=1,∴x=±1;
當(dāng)y= 時,x2= ,∴x= ;
原方程有4個根,分別是 .
(應(yīng)用)仿照上面的解題過程,求解方程:(x2﹣2x)2+(x2﹣2x)﹣6=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)y=2x2+bx+c.當(dāng)x=1時,y=4;當(dāng)x=﹣2,y=﹣5.
(1)求y關(guān)于x的二次函數(shù)的解析式;
(2)在直角坐標(biāo)系中把(1)中的圖象拋物線平移到頂點與原點重合,應(yīng)該怎樣平移?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形內(nèi)接于⊙,是⊙的直徑,過點作,交的延長線于點,平分.
(1)求證:是⊙的切線;
(2)已知cm,cm,求⊙的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=a與拋物線交于A、B兩點(A在B的左側(cè)),交y軸于點C
(1)若AB=4,求a的值
(2)若拋物線上存在點D(不與A、B重合),使,求a的取值范圍
(3)如圖2,直線y=kx+2與拋物線交于點E、F,點P是拋物線上的動點,延長PE、PF分別交直線y=-2于M、N兩點,MN交y軸于Q點,求QM·QN的值。
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市茶葉專賣店銷售某品牌茶葉,其進(jìn)價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:
(1)每千克茶葉應(yīng)降價多少元?
(2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應(yīng)按原售價的 幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD和AEGF都是菱形,∠A=60°,AD=3,點E,F分別在AB,AD邊上(不與端點重合),當(dāng)△GBC為等腰三角形時,AF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是ABCD的對角線,∠BAC=∠DAC.
(1)求證:AB=BC;
(2)若AB=2,AC=2,求ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com