【題目】計(jì)算:(3x+4y2-4y-3x)(3x+4y

【答案】18x2+24xy

【解析】

根據(jù)平方差公式和完全平方公式算乘法,再合并同類項(xiàng)即可.

解:原式=9x2+24xy+16y2-16y2-9x2=18x2+24xy

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項(xiàng)式4a3b﹣3ab2+a4﹣5b5按字母b的升冪排列是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù) 的圖象與x軸與交于點(diǎn)A、點(diǎn)B(2,0),與y軸交于點(diǎn)C,∠ACB=90o

(1)求二次函數(shù)解析式;

(2)直線軸平行,分別交線段ABCB于點(diǎn)E、F,且與拋物線交于點(diǎn)P

①求線段PF取得最大值時(shí),OE的長(zhǎng);

②四邊形ACPB的面積是否存在最大值?如果存在求出此最大值和點(diǎn)P的坐標(biāo);如果不存在,說明理由.

(3)不解方程組,直接寫出的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于二次函數(shù)yx2+2x1的圖象與性質(zhì),下列說法中正確的是( 。

A.頂點(diǎn)坐標(biāo)為(1,2

B.當(dāng)x<﹣1時(shí),yx的增大而增大

C.對(duì)稱軸是直線x=﹣1

D.最小值是﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各式因式分解:(14x2-8x+4;(2)(x+y2-4yx+y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在數(shù)軸上點(diǎn) 所對(duì)應(yīng)的數(shù)是,

對(duì)于關(guān)于的代數(shù)式,我們規(guī)定:當(dāng)有理數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn)為之間(包括點(diǎn), )的任意一點(diǎn)時(shí),代數(shù)式取得所有值的最大值小于等于,最小值大于等于,則稱代數(shù)式,是線段的封閉代數(shù)式.

例如,對(duì)于關(guān)于的代數(shù)式,當(dāng)時(shí),代數(shù)式取得最大值是;當(dāng)時(shí),代數(shù)式取得最小值是,所以代數(shù)式是線段的封閉代數(shù)式.

問題:()關(guān)于代數(shù)式,當(dāng)有理數(shù)在數(shù)軸上所對(duì)應(yīng)的點(diǎn)為之間(包括點(diǎn), )的任意一點(diǎn)時(shí),取得的最大值和最小值分別是__________.

所以代數(shù)式__________(填是或不是)線段的封閉代數(shù)式.

)以下關(guān)的代數(shù)式:

;

是線段的封閉代數(shù)式是__________,并證明(只需要證明是線段的封閉代數(shù)式的式子,不是的不需證明).

)關(guān)于的代數(shù)式是線段的封閉代數(shù)式,則有理數(shù)的最大值是__________,最小值是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)兩位數(shù),它的十位數(shù)字和個(gè)位數(shù)字的和為6,則這樣的兩位數(shù)有(  )個(gè).

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,DG平分∠ADBAB于點(diǎn)G,GFBDF

1)求證:△ADG≌△FDG;(2)若BG=2AG,BD=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)三角形的三個(gè)內(nèi)角的度數(shù)之比為1:2:3,那么相對(duì)應(yīng)的三個(gè)外角的度數(shù)之比為(

A. 3:2:1 B. 1:2:3 C. 3:4:5 D. 5:4:3

查看答案和解析>>

同步練習(xí)冊(cè)答案