【題目】函數(shù)y=ax2+bx+c的三項(xiàng)系數(shù)分別為a、b、c,則定義[a,b,c]為該函數(shù)的“特征數(shù)”.如:函數(shù)y=x2+3x-2的“特征數(shù)”是[1,3,-2],函數(shù)y=-x+4的“特征數(shù)”是[0,-1,4].如果將“特征數(shù)”是[2,0,4]的函數(shù)圖象向左平移3個(gè)單位,得到一個(gè)新的函數(shù)圖象,那么這個(gè)新圖象相應(yīng)的函數(shù)表達(dá)式是__________________

【答案】y=2(x+3)2+4

【解析】

先寫(xiě)出拋物線的解析式,然后求出頂點(diǎn)坐標(biāo),再根據(jù)向左平移橫坐標(biāo)減求出平移后的拋物線的頂點(diǎn)坐標(biāo),然后利用頂點(diǎn)式解析式寫(xiě)出函數(shù)表達(dá)式即可.

特征數(shù)[2,0,4],

函數(shù)解析式為y=2+4,

函數(shù)的頂點(diǎn)坐標(biāo)為(0,4),

函數(shù)圖象向左平移3個(gè)單位,

得到的新的函數(shù)圖象的頂點(diǎn)坐標(biāo)為(-3,4),

函數(shù)表達(dá)式為y=2 +4.

故答案為:y=2 +4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點(diǎn),連接DE.過(guò)點(diǎn)AAFDE,垂足為F,⊙O經(jīng)過(guò)點(diǎn)CD、F,與AD相交于點(diǎn)G

(1)求證:△AFG∽△DFC;

(2)若正方形ABCD的邊長(zhǎng)為4,AE=1,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,DEBC,點(diǎn)F在邊AC上,DFBE相交于點(diǎn)G,且∠EDF=ABE.

求證:(1)DEF∽△BDE;(2)DGDF=DBEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知長(zhǎng)方形硬紙板ABCD的長(zhǎng)BC為40cm,寬CD為30cm,按如圖所示剪掉2個(gè)小正方形和2個(gè)小長(zhǎng)方形(即圖中陰影部分),將剩余部分折成一個(gè)有蓋的長(zhǎng)方體盒子,

設(shè)剪掉的小正方形邊長(zhǎng)為xcm.(紙板的厚度忽略不計(jì))

(1)填空:EF= .cm,GH= .cm;(用含x的代數(shù)式表示)

(2)若折成的長(zhǎng)方體盒子的表面積為950cm2,求該長(zhǎng)方體盒子的體積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABCO的頂點(diǎn)A、C的坐標(biāo)分別為A(2,0)、C(-1,2),反比例函數(shù)y(k≠0)的圖象經(jīng)過(guò)點(diǎn)B.

(1)直接寫(xiě)出點(diǎn)B坐標(biāo).

(2)求反比例函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=2(x-2)2與平行于x軸的直線交于點(diǎn)A,B,拋物線頂點(diǎn)為C,△ABC為等邊三角形,求SABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2x軸上,依次進(jìn)行下去.若點(diǎn)A(,0),B(0,2),則點(diǎn)B2018的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC,A、B兩個(gè)頂點(diǎn)在軸的上方,點(diǎn)C的坐標(biāo)是(1,0).以點(diǎn)C為位似中心,x軸的下方作ABC的位似圖形,并把ABC的邊長(zhǎng)放大到原來(lái)的2,設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)B′的橫坐標(biāo)是a,則點(diǎn)B的橫坐標(biāo)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+ca≠0)的對(duì)稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①4ac﹣b20;2a﹣b=0a+b+c0;④點(diǎn)Mx1,y1)、Nx2y2)在拋物線上,若x1x2﹣1,則y1y2,abc0.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案